

QP - 159

V Semester B.Sc. Examination, March/April 2022 (CBCS) (F+R) (2018-19 and Onwards) PHYSICS – V

Statistical Physics, Quantum Mechanics – I, Atmospheric Physics and Nano Materials

Time : 3 Hours

Max. Marks: 70

Instructions : i) Answer any five questions from each Part. ii) Use of non-programmable scientific calculators are permitted.

PART – A

	Answer any five of the following. E	ach question carries eight marks :	(5×8=40)
	1. a) Define macrostate and micro	state for a thermodynamic system.	
	b) Derive the Maxwell-Boltzman	nn distribution function.	(2+6)
	 What is photon gas ? Derive Pla Bose-Einstein's distribution law. 	anck's law of black body radiation using	8 Parts
	 a) Write the expression for Fermi-Dirac distribution function and explain the variation of f(E) versus E with respect to temperature. 		
	 b) Write any four comparisons and Fermi-Dirac statistics. 	between Maxwell-Boltzmann, Bose-Ei	nstein (4+4)
4. Explain briefly the failure of classical theory with respect to stability of Atom. How does quantum theory account for the same ?		Atom. 8	
	 Discuss the theory of Davisson and Germer's experiment to demonstrate de-Broglie hypothesis. 		te 8
	 a) State and explain Heisenberg's uncertainty principle. Mention its different forms. 		
	 b) Prove the non-existence of e principle. 	lectron inside the nucleus using the unce	rtainty (4+4)
			P.1.0.

QP - 159

Define hydrostatic balance. Obtain an expression for variation of atmospheric (2+6) pressure with altitude.

-2-

- 8. a) Explain the two approaches in preparation of nano structures.
 - b) Mention any two properties and two applications of nano technology. (4+4)

PART – B

Answer **any five** of the following. **Each** question carries **four** marks : (5×4=20) Common data :

 $h = 6.625 \times 10^{-34} Js$

 $m_{p} = 1.67 \times 10^{-27} \text{ kg}$

 $k = 1.38 \times 10^{-23} \text{ Jkg}^{-1}$

 $m_e = 9.1 \times 10^{-31}$ kg.

- 9. A system consists of seven indistinguishable particles distributed in two energy states. The first having 4 cells and second having 5 cells. Calculate the number of microstates in the macrostate (3, 4).
- 10. Calculate the number of ways of arranging three particles in 4 cells, if the particles are :
 - i) Classical
 - ii) Fermions.
- Calculate the stopping potential for light of wavelength 200 nm incident on Tungsten. Given : Work function of material = 4.5 eV.
- 12. Calculate the de-Broglie wavelength of a thermal neutron at 27°C.
- 13. An electron has de-Broglie wavelength of 1.5 A°. Calculate the group velocity and phase velocity of electron in a non dispersive medium.
- 14. Calculate the pressure gradient force per unit mass at a hill station if the pressure gradient is 6 Pa/km. Density of air = 1.2 kg m⁻³.
- 15. At what height, the pressure of atmosphere becomes 40% of the pressure at the sea level. Given : Scale height = 8 km.
- 16. A mass weighing 1.2 kg is thrown from a point 30° N towards north with a speed of 0.8 kms⁻¹. Calculate the magnitude and direction of coriolis force acting on the mass.

-3-

PART – C

Answer any five of the following. Each question carries two marks : (5×2=10)

- 17. a) Do the wave function of identical and distinguishable particle overlap ? Justify.
 - b) Can Pauli's exclusion principle be applied to neutrons ? Explain.
 - c) Why Alkali metals are most suitable for photoelectric emission ?
 - d) A charged particle is accelerated by applying an electric field. How does the de-Broglie wavelength change ?
 - e) The presence of water vapour is important in the atmosphere. Justify.
 - f) Does a Coriolis force exist at equator ? Justify.
 - g) Why is ball milling called a top down approach for synthesis of nano-materials ?
 - h) Is Graphene a strongest material ? Justify.