

QP – 164

V Semester B.Sc. Examination, March/April 2022 (2016 - 17 and Onwards) (CBCS) (F + R) CHEMISTRY Paper – VI : Physical Chemistry

Time: 3 Hours

Max. Marks: 70

Instructions : i) The question paper has two Parts, answer both the Parts.

ii) Draw the diagram and chemical equation wherever necessary.

PART – A

I. Answer any eight of the following questions. Each question carries two marks.

 $(8 \times 2 = 16)$

- 1) State Kohlrausch law of independent migration of ions.
- 2) Mention any two advantages of glass electrode.
- 3) Molar conductance of 0.01M acetic acid at 25°C is 16.3×10^{-4} Sm²mol⁻¹. Molar conductance at infinite dilution at 25°C is 30.7×10^{-4} Sm²mol⁻¹. Calculate degree of dissociation.
 - 4) What is cell constant?
 - 5) What is salt bridge ? What is its function in galvanic cell ?
 - 6) What is the effect of temperature on degree of hydrolysis ?
 - 7) What is Peltier effect ?
 - 8) State Born–Oppenheimer's approximation.
 - 9) Which region of IR spectrum is called as finger print region ? Why ?
 - 10) State Hooke's law.
 - 11) Which of the following molecules are IR active ? Why ?

H₂, HCI, CH₄, H₂O.

12) Give any two applications of polarigraphy.

P.T.O.

QP - 164

(2016 - 17 and - Bras (CBCS) (F + R)

-2-

II. Answ	er any nine of the following. Each question carries six marks. (9x	(6=54)
13) a)	How is molar conductance of 0.1 M NaNO ₃ determined experimental	y ?
b)	The molar conductance of CH ₃ COONa, HCI and NaCI at infinite dilution are 9.20×10^{-3} , 4.272×10^{-3} and 12.85×10^{-3} Sm ² /mol respectively Calculate the molar conductance of acetic acid at infinite dilution.	on ly. (4+2)
14) a)	Explain asymmetric effect and electrophoretic effect.	
b)	Write any two advantages of conductometric titration.	(4+2)
15) a)	How do you determine EMF of cell potentiometrically ?	
(d ^(8x2=16)	Calculate the potential of zinc electrode, where in a zinc rod is dipped 0.05 M $ZnSO_4$ solution at 298 K.	in
	$E_{Zn}^{\circ}{}^{2+/}_{Zn} = -0.76V.$	(4+2)
16) a)	Describe the construction and working of Weston-Cadmium cell wire neat labelled diagram.	th
b)	What are reference electrodes ? Give an example.	(4+2)
17) a)	Show that the sum of transport numbers of cation and anion is unity.	
b)	Calculate the EMF of the concentration cell	
	$Pt.H_2/HCI (C_1 = 0.2 \text{ M}) // HCI(C_2 = 3 \text{ M})/H_2.Pt$	(4+2)
18) a)	Derive the relationship between K_{h} , K_{w} , K_{a} and K_{b} .	
b)	Mention the limitations of Ostwald's law.	(4+2)
19) a)	Define i) Seeback effect ii) Pyroelectricity.	
b)	Mention any two applications of semiconductors.	(4+2)

- 20) a) Write a note on :
 - i) Thomson effect
 - ii) Induced polarization.
 - b) What are inelastic collision ?

(4+2)

21) a) The pure rotational spectrum of CO has lines spaced at 385.5 m⁻¹ apart. Calculate its moment of inertia and bond length. Given μ = 1.139 × 10⁻²⁶ kg, h = 6.627 × 10⁻³⁴ Js and c = 3 × 10⁸ ms⁻¹.
b) Write vibrational energy expression for diatomic molecule at zero level. (4+2)
22) a) Give the relationship between vibrational frequency with force constant and reduced mass. Give the significance of force constant.
b) Which of the following molecules are IR active and why ? H₂, HCI, CH₄, H₂O (4+2)
23) a) Write any four advantages of Raman spectroscopy over IR spectroscopy.

-3-

- b) What are overtones and combination bands ? (4+2)
- 24) a) Give any four general characteristics of Raman lines.
 - b) Name the region of electromagnetic spectrum in which rotational spectrum and vibrational spectrum occur. (4+2)
- 25) a) Write Ilkovic equation. Mention its applications.
 - b) What is the principle of cyclic voltametry ? (4+2)