V Semester B.Sc. Examination, March/April 2022
 (2016-17 and Onwards) (CBCS) (F + R)
 CHEMISTRY
 Paper - VI : Physical Chemistry

Time: 3 Hours
Max. Marks : 70
Instructions : i) The question paper has two Parts, answer both the Parts.
ii) Draw the diagram and chemical equation wherever necessary.
PART - A
I. Answer any eight of the following questions. Each question carries two marks.

1) State Kohlrausch law of independent migration of ions.
2) Mention any two advantages of glass electrode.
3) Molar conductance of 0.01 M acetic acid at $25^{\circ} \mathrm{C}$ is $16.3 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$. Molar conductance at infinite dilution at $25^{\circ} \mathrm{C}$ is $30.7 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$. Calculate degree of dissociation.
4) What is cell constant?
5) What is salt bridge ? What is its function in galvanic cell ?
6) What is the effect of temperature on degree of hydrolysis ?
7) What is Peltier effect?
8) State Born-Oppenheimer's approximation.
9) Which region of IR spectrum is called as finger print region? Why?
10) State Hooke's law.
11) Which of the following molecules are IR active? Why ?

$$
\mathrm{H}_{2}, \mathrm{HCl}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O} .
$$

12) Give any two applications of polarigraphy.

PART - B

II. Answer any nine of the following. Each question carries six marks.
(9×6=54)
13) a) How is molar conductance of $0.1 \mathrm{M} \mathrm{NaNO}_{3}$ determined experimentally ?
b) The molar conductance of $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{HCl}$ and NaCl at infinite dilution are $9.20 \times 10^{-3}, 4.272 \times 10^{-3}$ and $12.85 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol}$ respectively. Calculate the molar conductance of acetic acid at infinite dilution.
14) a) Explain asymmetric effect and electrophoretic effect.
b) Write any two advantages of conductometric titration.
15) a) How do you determine EMF of cell potentiometrically ?
b) Calculate the potential of zinc electrode, where in a zinc rod is dipped in $0.05 \mathrm{M} \mathrm{ZnSO}_{4}$ solution at 298 K .

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Zn}}^{\circ}{ }^{2+/ 2 \mathrm{n}}=-0.76 \mathrm{~V} . \tag{4+2}
\end{equation*}
$$

16) a) Describe the construction and working of Weston-Cadmium cell with neat labelled diagram.
b) What are reference electrodes ? Give an example.
17) a) Show that the sum of transport numbers of cation and anion is unity.
b) Calculate the EMF of the concentration cell

$$
\begin{equation*}
\mathrm{Pt} . \mathrm{H}_{2} / \mathrm{HCl}\left(\mathrm{C}_{1}=0.2 \mathrm{M}\right) / / \mathrm{HCl}\left(\mathrm{C}_{2}=3 \mathrm{M}\right) / \mathrm{H}_{2} \cdot \mathrm{Pt} \tag{4+2}
\end{equation*}
$$

18) a) Derive the relationship between K_{h}, K_{w}, K_{a} and K_{b}.
b) Mention the limitations of Ostwald's law.
19) a) Define
i) Seeback effect
ii) Pyroelectricity.
b) Mention any two applications of semiconductors.
20) a) Write a note on :
i) Thomson effect
ii) Induced polarization.
b) What are inelastic collision ?
21) a) The pure rotational spectrum of CO has lines spaced at $385.5 \mathrm{~m}^{-1}$ apart. Calculate its moment of inertia and bond length.
Given $\mu=1.139 \times 10^{-26} \mathrm{~kg}, \mathrm{~h}=6.627 \times 10^{-34} \mathrm{Js}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$.
b) Write vibrational energy expression for diatomic molecule at zero level.
22) a) Give the relationship between vibrational frequency with force constant and reduced mass. Give the significance of force constant.
b) Which of the following molecules are IR active and why?
$\mathrm{H}_{2}, \mathrm{HCl}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}$
23) a) Write any four advantages of Raman spectroscopy over IR spectroscopy.
b) What are overtones and combination bands ?
24) a) Give any four general characteristics of Raman lines.
b) Name the region of electromagnetic spectrum in which rotational spectrum and vibrational spectrum occur.
25) a) Write llkovic equation. Mention its applications.
b) What is the principle of cyclic voltametry ?
