Electronics, Magnetic Materials, Dielectrics and Quantum Mechanics – II

Time: 3 Hours

Instruction: Non-programmable scientific calculators are **permitted**.

PART - A

Answer **any five** questions. **Each** question carries **eight** marks. $(5 \times 8 = 40)$

- 1. a) What is an operational amplifier? Mention any two characteristics of an ideal op-amp.
 - b) Explain the working of an op-amp as a summing amplifier, with a diagram. Obtain an expression for the output voltage. (3+5)
- 2. a) What is Barkhausen criterion for oscillation?
 - b) Explain with circuit diagram, the working of Wein-bridge oscillator. Write the expression for frequency of oscillation. (2+6)
- 3. a) Where is sign bit used ? Explain.
 - b) With illustration show that NOR gate as a universal gate. (2+6)
- 4. a) Distinguish between dia, para and ferro-magnetic substances.
 - b) State Curie-Weiss law. Mention the condition in which it is valid. (6+2)
- 5. a) What are polar and non-polar dielectrics?
 - b) Explain electronic polarisation. Obtain an expression for electronic polarizability.
- 6. a) Mention the conditions to be satisfied by wavefunction to be physically acceptable solution of Schrodinger wave equation.
 - b) Explain an eigenvalue equation with an example. Mention the quantum mechanical operator for position and energy of a particle in one dimension. (3+5)

P.T.O.

(2+6)

SG - 264

Max. Marks: 70

- 7. a) Why do we normalise a wave function ?
 - b) Arrive at Schrodinger time independent equation for a particle in one dimension. Write the equation for three dimensions. (2+6)

-2-

- 8. a) Write the expression for the wavefunction and energy eigenvalues of a particle trapped in a three dimensional cubical box. Explain the degeneracy of the first excited state of the particle.
 - b) What is a rigid rotator ? Mention the expression for energy of a rigid rotator.
 (6+2)

PART – B

Solve any five problems. Each problem carries four marks. (5×4=20)

- 9. The gain of an amplifier is 100, with band width of 100 KHz. A negative feedback is applied. So that the gain reduces to 40, what is the new value of bandwidth ?
- 10. Design a high pass filter with cut off frequency of 10 KHz, with pass band gain A_v of 1 and capacitor of value 0.01 μ F.
- 11. Reduce the following Boolean expression and draw the simplified logic diagram.

 $Y = ABC + \overline{A}B + BC$

- 12. A silicon material is subjected to a magnetic field of strength 1000 Am⁻¹. If the magnetic susceptability of silicon is -0.3×10^{-5} . Calculate its magnetisation and flux density inside the material.
- 13. The susceptability of paramagnetic salt is 3.7×10^{-3} at 27° C. What will be its value at 200 K and 500 K?
- 14. An elemental solid dielectric medium has polarizability of 6×10^{-40} Fm². Assuming the internal field to be Lorentz field, determine the dielectric constant of material which has 2.5×10^8 atoms ($\epsilon_0 = 8.854 \times 10^{-12}$ Fm⁻¹).
- 15. An eigenvalue of an electron confined to one-dimensional box of length 20 Å is 151 eV. What is the order of excited state ?
- 16. Calculate the zero point energy in eV and spacing of energy levels in eV in one-dimensional oscillator of frequency 3.0 KHz.

PART – C

17. Answer any five questions. Each question carries two marks.

(5×2=10)

- a) Why is negative feedback called degenerative ? Explain.
- b) Why three RC sections are used in a phase-shift oscillator ?
- c) Why BCD is called a weighted code ?
- d) Is the equation A + AB = A true ? Justify.
- e) Does the magnetic susceptability of diamagnetic depends on temperature ? Explain.
- f) What does the area of hysteresis loop reveal ?
- g) Is dielectric constant for a material always a constant ? Explain.
- h) Why is the expectation value of momentum of a particle in a box zero ? Explain.

SG – 264