VI Semester B.Sc. Examination, September/October 2021
 (CBCS - Fresh + Repeaters - 2018-19 and Onwards)
 PHYSICS - VII
 Atomic, Molecular and Nuclear Physics

Time : 3 Hours
Max. Marks : 70
Instructions : 1) Answer any five questions from each Part.
2) Use of non-programmable scientific calculator are allowed.
PART - A

Answer any five of the following questions. Each question carries eight marks.

1. a) State and explain Pauli's exclusion principle.
b) Obtain an expression for the maximum number of electrons in a shell.
2. a) What are the two main features of the vector atom model ?
b) Derive an expression for the Bohr magneton.
3. a) What is anomalous Zeeman effect ?
b) Explain the phenomenon of anomalous Zeeman effect on the basis of quantum theory and derive an expression for change in energy.
4. a) State any two assumptions of Rutherford's alpha particle scattering experiment.
b) Derive the relation between the impact parameter and angle of scattering in Rutherford's alpha particle scattering experiment.
5. a) What is beta decay ?
b) Explain the different types of beta decay with an example for each type.
6. Describe the construction and working of a Geiger-Muller counter and explain the features of its characteristic curves.
7. Derive an expression for the Q value of a nuclear reaction using EnergyMomentum conservation.
8. a) State any two properties of Quarks.
b) Describe the four types of fundamental reactions.
PART - B

Solve any five of the following problems. Each problem carries four marks.
9. Find the wavelength of light emitted when a hydrogen atom undergoes transition from $5^{\text {th }}$ orbit to $2^{\text {nd }}$ orbit. Assume the ionisation potential for Hydrogen to be 13.6 eV . Given $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
10. Determine the value of rotational constant for HF molecule. Given the moment of inertia of the molecule is $1.38 \times 10^{-47} \mathrm{Kgm}^{2}$.
Assume $\mathrm{h}=6.625 \times 10^{-34} \mathrm{Js}$ and

$$
\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

11. With an exciting radiation of wavelength 435.8 nm , a substance should Raman line of a wavelength of 462.4 nm . Calculate the frequency of the corresponding anti stokes line.
12. One gram of a radioactive substance takes 50 seconds to lose one centigram. Find the half-life period of the substance.
13. Neptunium ${ }_{93} \mathrm{~Np}^{237}$ emits alpha particles of energy 4.19 MeV . Calculate the alpha disintegration energy.
14. Deutrons in a cyclotron describe a circle of radius 0.6 m before emerging from "dees". The oscillator frequency is 15 MHz . Find the flux density of the magnetic field and the energy acquired by the deutrons.
Given $m_{d}=3.349 \times 10^{-27} \mathrm{Kg}$

$$
e=1.6 \times 10^{-19} \mathrm{C}
$$

15. Calculate the threshold energy required to initiate the reaction P^{31} (n.p) Si^{31}. Given
Mass of proton $=1.00814 \mathrm{u}$
Mass of neutron $=1.00898 \mathrm{u}$
Mass of phosphorus $=30.93856 \mathrm{u}$
Mass of Silicon $=30.98515 \mathrm{u}$
16. When target Lithium $\left({ }_{3} \mathrm{Li}^{7}\right)$ of thickness 0.028 mm is bombarded with a beam of intensity 10^{15} protons $/ \mathrm{sec}, 10^{9}$ neutrons are produced. Calculate the cross-section of the reaction. Given density of Lithium $=500 \mathrm{~kg} / \mathrm{m}^{3}$.
PART - C

Answer any five of the following questions. Each question carries two marks. $\quad(5 \times 2=10)$
17. a) Alkali metals have Hydrogen like spectra. Justify.
b) Can principal quantum number be zero ? Explain.
c) Are energy levels in pure rotational spectra equally spaced ? Explain.
d) Why is that only α-particles are emitted by radioactive nuclei while protons and neutrons are not? Explain.
e) In Betatron, do electrons move in a fixed orbit of constant radius? Explain.
f) What is the significance of the negative sign of Q value of a nuclear reaction ? Explain.
g) Does conservation of parity hold good in (i) strong interactions and (ii) weak interactions?
h) Is photon an elementary particle ? Explain.

