

First Semester B.Sc. Examination, May 2022 (NEP - 2021-22 and Onwards) **PHYSICS**

DSC 1: Mechanics and Properties of Matter

Time: 21/2 Hours

Max. Marks: 60

Instructions: i) Answer any four questions from each Part.

ii) Use of non-programmable scientific calculator is permitted.

through a height of 0.32 m inside a 'A - TRAP ie of an oil of density 900 kgm².

If the density of steel is 7850 kgm⁻³, calculate stokes coefficient of viscosity, m Answer any 4 questions. Each question carries 2 marks.

 $(2\times 4=8)$

- 1. Can dimensional analysis be used to check the correctness of a formula or an equation? Explain with an example.
- 2. Two bodies A and B, have the same momentum. If A is very heavy compared to B, determine which one has more kinetic energy.
- 3. Which is more elastic, steel or rubber ? Explain.
- 4. Is there a modulus of elasticity that exists for all the three states of matter? Give an example.
- 5. What property of water allows insects to run on the surface of water, without sinking or drawing? Explain.
- 6. How does temperature affect the viscosity of a liquid ? Explain with an application.

PART - B to entrol notession of evided (d-

around earth at a height, h, above the surface of the earth Answer any 4 questions. Each question carries 5 marks.

 $(5 \times 4 = 20)$

- 7. Convert 10 N into dyne using dimensional analysis.
- 8. Two objects of mass 5 kg and 10 kg have position vectors of $(3\hat{i} + 6\hat{j} 3\hat{k})$ m and $(3\hat{i} - 9\hat{j} + 3\hat{k})$ m respectively from the origin of a coordinate system. Calculate the position vector and the distance of their center of mass from the origin.

- 9. The Poisson's ratio for glass is 0.4 and its Youngs' modulus is 2 \times 10¹⁰ Nm⁻². Calculate the rigidity modulus, η , of glass.
- 10. Find the work done in twisting a steel wire of radius 1 \times 10⁻³m and length 0.25 m through an angle of 45°: given, the rigidity modulus, η , for steel is 8×10^{10} Nm⁻².
- 11. Calculate the excess pressure inside a soap bubble of radius 3×10^{-3} m, and also its surface energy, given the surface tension of the soap solution = 20×10^{-3} Nm⁻¹.
- 12. A sphere of mass 1.6×10^{-4} kg and radius 2.2×10^{-3} m takes 6.4 s to fall steadily through a height of 0.32 m inside a large volume of an oil of density 900 kgm⁻³. If the density of steel is 7850 kgm⁻³, calculate stokes coefficient of viscosity, η , of the oil.

PART - C

		ation ? Explain with an example	
An	SWE	er any four questions. Each question service &	4=32)
13.	a)	Define work. Vgrane orients arom and ano doldw animalab	
	b)	Derive an expression for the work done by a variable force.	(2+6)
14.	a)	State the postulates of special theory of relativity.	
	b)	Explain time dilation and obtain an expression for it.	(2+6)
15.	a)	Define the moment of inertia of a body.	
	b)	Derive an expression for the moment of inertia of a rectangular lamina about an axis passing through its centre and perpendicular to its plane.	(2+6)
16.	a)	State Keplers' laws of planetary motion.	app
	b)	Derive an expression for the orbital velocity of a satellite in a circular orbitaround earth at a height, h, above the surface of the earth.	t (3+5)
17.	a)	Define Youngs' modulus, rigidity modulus and Poissons ratio.	Answe
		Obtain an expression for the work done in stretching a wire.	(3+5)
18.	a)	Define viscosity. To another notitieng even pi 01 bns pi d assim to arreido o	wT a
	b)	Derive Poisuelles formula for the flow of a viscous fluid through a narrow	(2+6)