I Semester B.A./B.Sc. Examination, March/April 2022 (CBCS) (2014-15 and Onwards) (Repeaters)

 MATHEMATICS (Paper - I)

 MATHEMATICS (Paper - I)}

Time : 3 Hours
Max. Marks : 70

Instruction : Answer all questions.

PART - A

1. Answer any five questions.
a) Define a Rank of matrix.
b) Find the eigen value of the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
d) If $z=x^{3}-4 x^{2} y+5 y^{2}$ find $\frac{\partial^{2} z}{\partial x \partial y}$.
e) Evaluate $\int_{0}^{\pi / 2} \sin ^{6} x d x$.
f) Evaluate $\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{2} x d x$.
g) Find the angle between the line $\frac{x-3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$ and the plane
$x+y+z+5=0$.
h) If the two spheres $x^{2}+y^{2}+z^{2}+6 z-k=0$ and $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0$ cuts orthogonally, find k.
PART - B

Answer any one full questions.
2. a) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7\end{array}\right]$ by reducing to row reduced
echelon form.
b) Find the non trivial solution of the system $x+3 y-2 z=0,2 x-y+4 z=0$ and $x-11 y+14 z=0$.
C) Verify Cayley Hamilton Theorem for the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$. OR OR
3. a) Reduce the matrix $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5\end{array}\right]$ to normal form and find its rank.
b) Show that the system of equations $x+y+z=-3,3 x+y-2 z=-2$, $2 x+4 y+7 z=7$ are not consistent.
c) Find eigen values and eigen vectors of the matrix $A=\left[\begin{array}{cc}5 & -1 \\ 4 & 9\end{array}\right]$.

PART - C
Answer any two full questions :
4. a) Find the $n^{\text {th }}$ derivative of $\frac{1}{6 x^{2}-5 x+1}$.
b) If $y=\sin ^{-1} x$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
c) Find the $n^{\text {th }}$ derivative of
a) $\log (5 x+4)$
b) $\cos 2 x \cos 3 x$.

OR

5. a) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
b) Find the total derivative of u w.r.t ' t ' where $u=e^{x} \sin y, x=\log t, y=t^{2}$.
c) If $u=(x-y)^{n}+(y-z)^{n}+(z-x)^{n}$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
6. a) Find $\frac{d f}{d t}$ where $f(x, y, z)=\log \left(x^{2}+y^{2}+z^{2}\right), x=e^{t}, y=\sin t, z=\cos t$ by using partial differentiation.
b) If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$, show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta$.
c) Obtain Reduction formula for $\int \tan ^{n} x d x$.
7. a) Obtain Reduction formula for $\int \operatorname{cosec}^{n} x d x$.
b) Evaluate $\int_{0}^{\pi} x \cos ^{6} x d x$.
PART - D

Answer any one full question.

8. a) Find the equation of the plane passing through the line of intersection of the planes $2 x+y+3 z-4=0$ and $4 x-y+2 z-7=0$ and perpendicular to the plane $x+3 y-4 z+6=0$.
b) Show that the lines $\frac{x-1}{1}=\frac{y+1}{-1}=\frac{z-3}{1}$ and $\frac{x-2}{2}=\frac{y-4}{1}=\frac{z-6}{3}$ are coplanar, find the equation of the plane containing them.
c) Obtain the equation of the sphere which passes through the points $(1,0,0)$ $(0,1,0)$ and $(0,0,1)$ and which has its centre on the plane $3 x-y+z=2$.

OR
9. a) Find the shortest distance between the skew lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-6}{4}=\frac{z-5}{5}$.
b) Find the equation of the right circular cone whose vertex is at $(2,-3,5)$ axis makes an equal angles with the co-ordinate axes and the semi vertical angle is measured to be 30°.
c) Find the equation of the right circular cylinder for which radius is 4 whose axis is the line $\frac{x-1}{2}=\frac{y-3}{-3}=\frac{z-3}{6}$.

