QP - 161

I Semester B.Sc. Examination, March/April 2022 (CBCS) (Repeaters) (2014-15 and Onwards)
 Paper - I : CHEMISTRY

Time : 3 Hours
Max. Marks : 70

Instructions : 1) The question paper has two Parts. Answer both the Parts.

2) Draw chemical equations and diagrams wherever necessary.

PART - A

Answer any eight of the following questions. Each question carries two marks.

1. Give any two applications of integration in chemistry.
2. Write Mathematical expression of Maxwell-Boltzmann equation for velocity distribution and explain the terms involved in it.
3. Write the significance of Vander-Waal's constants a and b.
4. State Grotthus-Draper law.
5. Define viscosity of liquid and mention its SI unit.
6. What are alkaline earth metals? Write its general electronic configuration.
7. Define electron affinity.
8. Why is the second ionisation energy greater than the first ionisation energy ?
9. Calculate the equivalent weight of sodium carbonate (Given atomic masses of $\mathrm{C}=12, \mathrm{O}=16, \mathrm{Na}=23$).
10. Classify the following into electrophiles and nucleophiles: $\mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{CN}^{\ominus}, \mathrm{NO}_{2}^{\oplus}$.
11. Draw chair and boat conformation of cyclohexane.
12. Explain Corey-House reaction with an example.
P.T.O.

$$
\begin{gathered}
-2- \\
\text { PART - B }
\end{gathered}
$$

Answer any nine of the following questions. Each question carries six marks.
13. a) i) If $\log 5=0.6990$ and $\log 7=0.8451$, find the value of $\log 35$.
ii) Define probability.
b) Write any two rules to find the differentiation.
14. a) Describe the experimental determination of critical volume by Amagat's mean density method.
b) Calculate rms velocity of oxygen molecule at 300 K [mass of $\mathrm{O}_{2}=32 \times 10^{-3} \mathrm{~kg}$, $\left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$.
15. a) Describe the Linde's process for the liquefaction of air.
b) State the law of corresponding states.
16. a) Explain the terms fluorescence and phosphorescence.
b) Write a short note on chemical sensors.
17. a) Mention any four differences between ideal and non-ideal solutions.
b) Define Parachor.
18. a) Explain steam distillation of a liquid mixture.
b) 0.001 kg of a solute is dissolved in 0.1 kg of solvent and it gave a depression in freezing point 0.2 K . Calculate the molecular mass of the solute (The cryoscopic constant for water is $5.0 \mathrm{kgmol}^{-1}$).
19. a) Discuss Berkeley-Hartley's method of measurement of osmotic pressure of a solution.
b) How is benzene prepared from cyclohexane ? Give the equation.
20. a) Define atomic radius of an atom. Explain how it varies in the periodic table.
b) Give any two applications of electronegativity.
21. a) Explain the formation of oxides and carbonates of alkaline earth elements.
b) What is diagonal relationship? Give example.
22. a) Calculate the molarity and normality of a solution containing $5.3 \mathrm{~g} \mathrm{of}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$ dissolved in $500 \mathrm{~cm}^{3}$ of solution.
b) What is a dibasic acid ? Give an example.
23. a) What is isomerism ? Give its classification.
b) Explain resonance effect with an example.
24. a) State Markownikov's rule and discuss its mechanism.
b) Write the reaction which shows acidic nature of terminal alkynes.
25. a) How are dienes classified ? Mention an example for each type.
b) Calculate angle strain in cyclopentane.

