

QP - 157

Max. Marks: 70

I Semester B.Sc. Examination, March/April 2022 (CBCS) (Repeaters) (2016-17 and Onwards) PHYSICS – I

Mechanics – I, Heat and Thermodynamics – I

Time: 3 Hours

Instructions : 1) Answer any five questions from each Part. 2) Use of non-programmable scientific calculator are allowed.

PART – A

Ans	ver any five questions. Each question carries eight marks. (5×8=40))
1.	 a) Derive an expression for the displacement of a particle in a resistive medium. Draw displacement time graph. 	
	b) Define time constant. (7+1))
2	Obtain an expression for acceleration and velocity of a body moving along an inclined plane without friction.	3
3	a) State and prove work-energy theorem.	
	 b) Distinguish between conservative and non-conservative forces with examples. (4+4))
4	 a) Write any two properties of thermal radiation. b) Assuming Planck's radiation law, deduce Wien's distribution law and Rayleigh-Jeans law for blackbody radiation. (2+6))
5	Obtain an expression for the pressure exerted by a gas based on kinetic theory.	8
6	. Derive the relation for the co-efficient of viscosity of a gas on the basis of kinetic theory of gases.	8
7	a) What is a cyclic process ? b) Show that PV^{γ} = constant for an adiabatic process. (1+7	')
8	 a) What is entropy ? b) Derive an expression for change in entropy in an reversible process. (2+6) 	5)

P.T.O.

PART – B

-2-

Answer any five of the following problems. Each problem carries four marks. (5×4=20)

- 9. A block slides on ice with a velocity of 5 ms⁻¹ and comes to rest after moving through a distance of 13.5 m. Find the co-efficient of friction.
- 10. Determine the escape velocity of a body from the moon. Take the moon to be a uniform sphere of radius 1.74×10^6 m, mass to be 7.36×10^{19} kg and $G = 6.67 \times 10^{-11}$ Nm²kg⁻².
- 11. A 5 kg body and 8 kg body are moving along the x-axis. At a particular instant the 5 kg body has a velocity of 3 ms⁻¹ and 8 kg body has a velocity of – 1ms⁻¹. Find the velocity of the centre of mass.
 - 12. A uniformly heated enclosure is maintained at 2727°C and has a cavity of diameter 4 mm. Assuming that the cavity behaves like a perfectly blackbody, calculate the energy radiated in 2 minutes from the cavity.
 - Calculate the molecular mean free path of nitrogen molecule, given rms velocity of a molecule of nitrogen is 4.56 × 10²ms⁻¹, density at NTP is 1.26 kgm⁻³ and co-efficient of viscosity being 1.65 × 10⁻⁵ NSm⁻².
 - 14. Calculate the Vander Waal's constants for dry air, given that $T_c = 132$ K, $P_c = 38.5 \times 10^5$ Nm⁻² and R = 8.314 J kg⁻¹ deg mole⁻¹.
 - 15. The efficiency of an engine is found to increase from 0.3 to 0.4 when the temperature of sink is lowered by 50°C. Calculate the temperature of source and sink.
 - 16. Calculate the increase in entropy when 1 kg of ice at 273 K is converted into water at 300 K. Specific heat of ice is 4200 Jkg⁻¹K⁻¹, latent heat of ice is 335×10^3 J kg⁻¹.

PART – C

- 17. Answer any five of the following. Each question carries two marks. (5×2=10)
 - a) "Is it easier to make a body roll over a surface than to slide" ? Explain.
 - b) Is there any workdone in moving an object from one point to another on spherical shell ? Justify.
 - c) A light body and a heavy body have the same kinetic energy. Which one will have greater momentum ?
 - d) Can a body have (a) energy without momentum (b) momentum without energy.
 - e) Are thermal radiations electromagnetic in nature ? Explain.
 - f) Can an ideal gas be converted into solid or liquid states ? Explain.
 - g) If the door of a refrigerator is kept open in a room, will it make the room warm or cool ? Explain.
 - h) A reversible adiabatic change is isentropic. Justify.