I Semester B.A./B.Sc. Examination, April/May 2021 (Semester Scheme) (CBCS) (F+R) (2014-15 and Onwards) MATHEMATICS - I

Time: 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART - A

Answer any five questions :

1. a) Find the eigenvalue of the matrix $\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.
b) State Cayley-Hamilton theorem.
c) Find the $n^{\text {th }}$ derivative of $\log _{e}(5 x-2)$.
d) If $z=e^{\frac{x}{y}}$ find $\frac{\partial^{2} z}{\partial x \partial y}$.
e) Evaluate $\int_{0}^{\pi / 2} \cos ^{5} x \cdot d x$.
f) Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x \cdot \cos ^{4} x . d x$.
g) Show that the planes $x+2 y-3 z+4=0$ and $4 x+7 y+6 z+2=0$ are perpendicular.
h) If the two spheres $x^{2}+y^{2}+6 z+z^{2}-k=0$ and $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0$ cuts orthogonally, find ' K '.
PART - B

Answer one full question:
($1 \times 15=15$)
2. a) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 0 & 2 & -2 \\ 2 & -1 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 4 & -1 & 3 & -1\end{array}\right]$ by reducing into Echelon
form.
b) Find the non-trivial solution of the system of equations $2 x-y+3 z=0$, $3 x+2 y+z=0$ and $x-4 y+5 z=0$.
P.T.O.
3. a) Find the rank of the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$
form. by reducing it into normal
b) Solve completely the system of equations $x+3 y+2 z=0,2 x-y+3 z=0$, $3 x-5 y+4 z=0$ and $x+17 y+4 z=0$
c) Using Cayley-Hamilton theorem find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 1 & -1 \\
3 & -1 & 1
\end{array}\right]
$$

PART - C

Answer two full questions :
4. a) Find the $n^{\text {th }}$ derivative of $\frac{x^{2}}{(x+2)(2 x+3)}$.
b) Find the $n^{\text {th }}$ derivative of $\sin ^{3} x \cdot \cos ^{2} x$.
c) If $y=\left(\sin ^{-1} x\right)^{2}$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.

OR
5. a) If $u=(x-y)^{n}+(y-z)^{n}+(z-x)^{n}$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
b) State and prove Euier's theorem for homogeneous functions.
c) Find $\frac{d u}{d t}$, if $u=x^{2} y^{3}, x=2 t^{3}, y=3 t^{2}$.
6. a) If $u=x^{2}-2 y$ and $v=x+y$ find $J=\frac{\partial(u, v)}{\partial(x, y)}$ and $J^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$ and verify $\mathrm{JJ}^{\prime}=1$.
b) Verify Euler's theorem for $U=\tan ^{-1}\left(\frac{x+y}{x-y}\right)$.
c) Obtain reduction formula for $\int \tan ^{n} x . d x$.
7. a) Obtain reduction formula for $\int \sec ^{n} x \cdot d x$.
b) Evaluate $\int_{0}^{1} \frac{x^{6}}{\sqrt{1-x^{2}}} \cdot d x$.
c) Verify the Leibnitz rule of differentiation under the integral sign for $\int_{0}^{\pi / 2} \frac{d x}{\alpha(1+\cos x)}$, where α is a parameter.

PART - D
Answer one full question :
8. a) Find the equation of the plane passing through the line of intersections of the planes $2 x+y+3 z-4=0$ and $4 x-y+2 z-7=0$ are perpendicular to the plane $x+3 y-4 z+6=0$.
b) Find ' K ' such that the lines $\frac{x-3}{1}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-4}{2}=\frac{y-2}{3}=\frac{Z+2}{K}$ are coplanar. For this ' K ' find the plane containing the lines.
c) Find the equation of the sphere passing through the points $(3,0,0)$ $(0,0,-2)$ and having its centre on the plane $3 x+2 y+4 z-1=0$.

OR

9. a) Find the shortest distance between the skew lines

$$
\frac{x}{2}=\frac{y}{-3}=\frac{z}{1} \text { and } \frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{1}
$$

b) Find the equation of the right circular cone whose vertex is the origin, whose axis is the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and which has the semivertical angle of 30°.
c) Find the equation of the right circular cylinder for which radius 4 units and whose axis is the line $\frac{x-1}{2}=\frac{y-3}{-3}=\frac{z-3}{6}$.

