## QP - 220

# I Semester B.Sc. Examination, April/May 2021 <br> (CBCS) (Fresh + Repeaters) <br> (2016-2017 and Onwards) <br> PHYSICS - I <br> Mechanics - I, Heat and Thermodynamics - I 

Time : 3 Hours
Max. Marks : 70
Instructions : a) Answer any five questions from each Part.
b) Non-programmable scientific calculators are allowed.

## PART - A

Answer any five of the following questions. Each question carries eight marks. (5×8=40)

1. a) Write the laws of friction.
b) Obtain an expression for the acceleration of a body sliding down a rough inclined plane.
2. Obtain expressions for the radial and transverse components of velocity and acceleration of a particle moving along a curve in a plane.
3. a) Define the center of mass of a system of particles.
b) Derive Newton's second law of motion for a system of particles.
4. a) Define solar constant.
b) Describe the experimental method of determination of solar constant using Angstrom's pyrheliometer.
5. Obtain an expression for pressure exerted by gas molecules on the basis of kinetic theory of gases.
6. a) Define the critical temperature of a real gas.
b) Derive the expressions for the critical constants, $\mathrm{V}_{\mathrm{C}}$ and $\mathrm{T}_{\mathrm{C}}$, in terms of the Van der Waals' constants, 'a' and 'b'.
P.T.O.

# I Semester B.Sc. Examination, April/May 2021 (CBCS) (Fresh + Repeaters) <br> (2016 - 2017 and Onwards) <br> PHYSICS - I <br> Mechanics - I, Heat and Thermodynamics - I 

## Time : 3 Hours

Max. Marks : 70
Instructions : a) Answer any five questions from each Part.
b) Non-programmable scientific calculators are allowed.
PART - A

Answer any five of the following questions. Each question carries eight marks. ( $5 \times 8=40$ )

1. a) Write the laws of friction.
b) Obtain an expression for the acceleration of a body sliding down a rough inclined plane.
2. Obtain expressions for the radial and transverse components of velocity and acceleration of a particle moving along a curve in a plane.
3. a) Define the center of mass of a system of particles.
b) Derive Newton's second law of motion for a system of particles.
4. a) Define solar constant.
b) Describe the experimental method of determination of solar constant using Angstrom's pyrheliometer.
5. Obtain an expression for pressure exerted by gas molecules on the basis of kinetic theory of gases.
6. a) Define the critical temperature of a real gas.
b) Derive the expressions for the critical constants, $\mathrm{V}_{\mathrm{C}}$ and $\mathrm{T}_{\mathrm{C}}$, in terms of the Van der Waals' constants, 'a' and 'b'.
P.t.O.
7. a) State and explain the first law of thermodynamics, giving its significance.
b) Derive an expression for the work done by an ideal gas during an adiabatic
8. Derive an expression for the change in entropy of an ideal gas in terms of
a) Temperature and volume
b) Temperature and pressure.

## PART - B

Solve any five of the following problems. Each carries four marks.
9. A sphere of mass $3 \times 10^{-3} \mathrm{~kg}$ moving vertically downward in a resistive medium has a terminal velocity of $0.05 \mathrm{~ms}^{-1}$ and the drag coefficient is 0.6 . Calculate the time constant and the time taken by the sphere to reach $80 \%$ of its terminal speed. Assume the resistive force is proportional to its velocity.
10. Calculate the time period of a satellite orbiting earth from given data $\mathrm{G}=6.7 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}, M_{E}=6 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6400 \mathrm{~km}, \mathrm{~h}=3.563 \times 10^{3} \mathrm{~km}$.
11. A rocket of mass 5000 kg is fired vertically upward. The exhaust velocity of the fuel is $3 \mathrm{kms}^{-1}$ and the rate of consumption of the fuel is $50 \mathrm{kgs}^{-1}$. Calculate the rockets initial upward acceleration.
12. Determine the temperature at which a blackbody losses thermal energy per second equal to $10^{4} \mathrm{Wm}^{-2}$, given Stefans' constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$.
13. The mean free path of $N_{2}$ at 273 K and one atmospheric pressure is $8 \times 10^{-8} \mathrm{~m}$. Calculate the number of nitrogen molecules per $\mathrm{m}^{3}$, if the diameter of the molecule is $3.2 \AA$.
14. The average speed of a gas molecule is $400 \mathrm{~ms}^{-1}$. Calculate the coefficient of viscosity of the gas, if its density is $1.25 \mathrm{kgm}^{-3}$ and mean free path of the gas molecule is $9 \times 10^{-8} \mathrm{~m}$.
15. One mole of an ideal gas is maintained at $0^{\circ} \mathrm{C}$ during an expansion from $3 \mathrm{~m}^{3}$ to $10 \mathrm{~m}^{3}$. How much work is done by the gas during this expansion ? Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
16. Determine the efficiency of a Carnot heat engine working between the temperatures $127^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$.

## PART - C

Answer any five of the following questions. Each question carries two marks.
17. a) Is it better for a cricket player to lower his hands as he catches a cricket ball that is falling from a great height? Why?
b) Is the speed of a planet the same at all points in its orbit around the sun? Explain.
c) Can the center of mass of a body lie where there is absolutely no mass ? Explain.
d) What is the work done by an object in uniform linear motion at a constant velocity on a absolutely frictionless surface? Why?
e) Why gas laws are not applicable completely at a low temperature and high pressure?
f) Is $\mathrm{C}_{\mathrm{p}}$ greater than $\mathrm{C}_{\mathrm{v}}$ ? Why?
g) Explain why a diesel engine is preferred to an Otto engine.
h) Does the entropy of the universe always increase? Why?

