

QP – 220

I Semester B.Sc. Examination, April/May 2021 (CBCS) (Fresh + Repeaters) (2016 – 2017 and Onwards) PHYSICS – I

Mechanics – I, Heat and Thermodynamics – I

Time : 3 Hours

Max. Marks: 70

Instructions : a) Answer any five questions from each Part. b) Non-programmable scientific calculators are allowed.

PART – A

Answer any five of the following questions. Each question carries eight marks. (5×8=40)

- 1. a) Write the laws of friction.
 - b) Obtain an expression for the acceleration of a body sliding down a rough inclined plane. (2+6)
- Obtain expressions for the radial and transverse components of velocity and acceleration of a particle moving along a curve in a plane.
 8
- 3. a) Define the center of mass of a system of particles.
 - b) Derive Newton's second law of motion for a system of particles. (2+6)
- 4. a) Define solar constant.
 - b) Describe the experimental method of determination of solar constant using Angstrom's pyrheliometer. (2+6)
- Obtain an expression for pressure exerted by gas molecules on the basis of kinetic theory of gases.
- 6. a) Define the critical temperature of a real gas.
 - b) Derive the expressions for the critical constants, V_C and T_C , in terms of the Van der Waals' constants, 'a' and 'b'. (2+6)

8

QP - 220

I Semester B.Sc. Examination, April/May 2021 (CBCS) (Fresh + Repeaters) (2016 – 2017 and Onwards) PHYSICS – I Mechanics – I, Heat and Thermodynamics – I

Time : 3 Hours

Max. Marks: 70

Instructions : a) Answer any five questions from each Part. b) Non-programmable scientific calculators are allowed.

PART – A

Answer any five of the following questions. Each question carries eight marks. (5×8=40)

- 1. a) Write the laws of friction.
 - b) Obtain an expression for the acceleration of a body sliding down a rough inclined plane. (2+6)
- Obtain expressions for the radial and transverse components of velocity and acceleration of a particle moving along a curve in a plane.
 8
- 3. a) Define the center of mass of a system of particles.
 - b) Derive Newton's second law of motion for a system of particles. (2+6)
- 4. a) Define solar constant.
 - b) Describe the experimental method of determination of solar constant using Angstrom's pyrheliometer. (2+6)
- 5. Obtain an expression for pressure exerted by gas molecules on the basis of kinetic theory of gases.
- 6. a) Define the critical temperature of a real gas.
 - b) Derive the expressions for the critical constants, V_C and T_C , in terms of the Van der Waals' constants, 'a' and 'b'. (2+6)

P.T.O.

8

QP - 220

7. a) State and explain the first law of thermodynamics, giving its significance.

-2-

- b) Derive an expression for the work done by an ideal gas during an adiabatic process.
 (4+4)
- 8. Derive an expression for the change in entropy of an ideal gas in terms of
 - a) Temperature and volume
 - b) Temperature and pressure.

PART – B

Solve any five of the following problems. Each carries four marks.

- 9. A sphere of mass 3×10^{-3} kg moving vertically downward in a resistive medium has a terminal velocity of 0.05 ms⁻¹ and the drag coefficient is 0.6. Calculate the time constant and the time taken by the sphere to reach 80% of its terminal speed. Assume the resistive force is proportional to its velocity.
- 10. Calculate the time period of a satellite orbiting earth from given data $G = 6.7 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$, $M_E = 6 \times 10^{24} \text{ kg}$, $R_E = 6400 \text{ km}$, $h = 3.563 \times 10^3 \text{ km}$.
- 11. A rocket of mass 5000 kg is fired vertically upward. The exhaust velocity of the fuel is 3 kms⁻¹ and the rate of consumption of the fuel is 50 kgs⁻¹. Calculate the rockets initial upward acceleration.
- 12. Determine the temperature at which a blackbody losses thermal energy per second equal to 10^4 Wm⁻², given Stefans' constant = 5.67×10^{-8} Wm⁻² K⁻⁴.
- 13. The mean free path of N₂ at 273 K and one atmospheric pressure is 8×10^{-8} m. Calculate the number of nitrogen molecules per m³, if the diameter of the molecule is 3.2 Å.
- 14. The average speed of a gas molecule is 400 ms⁻¹. Calculate the coefficient of viscosity of the gas, if its density is 1.25 kgm⁻³ and mean free path of the gas molecule is 9×10^{-8} m.
- 15. One mole of an ideal gas is maintained at 0°C during an expansion from 3 m^3 to 10 m³. How much work is done by the gas during this expansion ? Given $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$.
- 16. Determine the efficiency of a Carnot heat engine working between the temperatures 127°C and 27°C.

 $(5 \times 4 = 20)$

(4+4)

QP - 220

PART – C

Answer any five of the following questions. Each question carries two marks. (5×2=10)

- 17. a) Is it better for a cricket player to lower his hands as he catches a cricket ball that is falling from a great height ? Why ?
 - b) Is the speed of a planet the same at all points in its orbit around the sun ? Explain.
 - c) Can the center of mass of a body lie where there is absolutely no mass ? Explain.
 - d) What is the work done by an object in uniform linear motion at a constant velocity on a absolutely frictionless surface ? Why ?
 - e) Why gas laws are not applicable completely at a low temperature and high pressure ?
 - f) Is C_p greater than C_v ? Why?
 - g) Explain why a diesel engine is preferred to an Otto engine.
 - h) Does the entropy of the universe always increase ? Why ?