QP - 255

I Semester B.Sc. Examination, April/May 2021 (CBCS - F + R - 2014-15 and Onwards) ELECTRONICS - I Basic Electronics

Time: 3 Hours
Max. Marks : 70
Instructions: i) Answer all questions from Part - A, any five questions from Part - B and any four questions from Part - C.
ii) Answer all questions of Part - A in any one page, the same questions answered multiple times will not be considered for evaluation.

PART - A

1. Answer all the sub-divisions:
i) A resistor has colour code bands as Brown, Black, Orange and Gold. Its value is
a) $1 \mathrm{~K} \Omega \pm 10 \%$
b) $10 \mathrm{~K} \Omega \pm 5 \%$
c) $100 \mathrm{~K} \Omega \pm 10 \%$
d) $1 \mathrm{M} \Omega \pm 10 \%$
ii) Internal resistance of an ideal current source is
a) Zero
b) Infinity
c) $0.5 \mathrm{M} \Omega$
d) High
iii) In a pure inductive circuit
a) The current is in phase with the voltage
b) The current lags behind the voltage by 90°
c) The current leads the voltage by 90°
d) The current can lead or lag by 90°
iv) In a step down transformer, the number of turns in the secondary coil is
a) Less than primary coil turns
b) More than primary coil turns
c) Equal to primary coil turns
d) None of these
v) According to Kirchhoffs Current Law, the algebraic sum of the currents meeting at a point is always
a) Zero
b) Positive
c) Negative
d) Equal to unity
vi) In the forward bias condition, a diode appears as
a) an OFF switch
b) an ON switch
c) infinite resistance
d) none of these
vii) The theoretical value of ripple factor for a Centre tap full wave rectifier is
a) 0.482
b) 0.812
c) 1.51
d) 1.21
viii) In voltage regulator circuits, Zener diode is operated in the
a) Forward bias mode
b) Reverse breakdown region
c) Knee voltage region
d) None of these
ix) In BJT, the current conduction is due to
a) Majority carriers only
b) Minority carriers only
c) Both majority and minority carriers
d) None of the above
x) Transistor biasing represents \qquad conditions.
a) D.C.
b) A. C.
c) Both A.C. and D.C.
d) None of these
xi) In \qquad region, a transistor acts as an open switch.
a) cut off region
c) active region
b) saturation region
d) inverted region
xii) A JFET is a
a) Current controlled device
b) Voltage controlled device
c) Both current and voltage controlled device
d) None of these
xiii) \qquad number system uses numerals and alphabets as symbols.
a) Binary
c) Hexadecimal
b) Decimal
c)
d) Octal
xiv) \qquad is the 1 's complement notation of the binary number 0001.
a) 1000
b) 1110
c) 1111
d) 0101
xv) \qquad also known as reflective binary code.
a) ASCII
b) Gray code
c) $B C D$ code
d) None of these

PART - B

Answer any five questions :

2. a) With a neat circuit diagram, explain the growth of charge in a series RC circuit excited by a DC source. Define 'Time constant' of this circuit.
b) What are active and passive components? Give examples.
3. a) When does a practical voltage source behave like a good voltage source?
b) State Thevenin's Theorem. With suitable circuit diagrams, explain the steps to Thevenise a resistive network.
4. a) Write the three approximations of a diode.
b) Draw the V-I characteristics of a diode. Define : Knee voltage.
5. a) With the help of circuit diagram and waveforms, explain half wave rectifier in detail.
b) Draw the circuit diagram of transistor voltage regulator.
6. a) Draw the output characteristics of a transistor in CE configuration and explain its different regions.
b) Define the terms ' α ' and ' β ' for a transistor.
7. a) Draw the circuit diagram of voltage divider biasing circuit.
b) With necessary diagram, explain the working of JFET.
8. a) With an example, explain how a decimal number is converted to its equivalent binary code. Consider the integer and fractional parts of decimal number.
b) Write the BCD code for all decimal digits.
9. With an example, explain binary subtraction using 2's complement method. 7
PART - C

Answer any four questions :
10. A-series resonance circuit has a resistor of 50Ω, inductor of 50 mH and capacitor of 2 nF . Calculate :
i) Resonant frequency
ii) Bandwidth when Q factor is 100 .
11. Draw the Thevenin's equivalent circuit for the circuit given below. Find the current through and voltage across $R_{L}=5 \Omega$.

12. Determine the value of R_{L} for maximum power transfer in the given circuit. Also calculate the maximum power delivered to the load.

13. A transformer used in a half wave rectifier has a turn's ratio of $8: 1$. The primary is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$. Assuming the diode to be ideal, Calculate:
i) The DC output voltage of the rectifier
ii) Average current
iii) PIV of the rectifier diode.
14. The following values are recorded to plot an NPN transistor characteristics in CE mode. Determine r_{p}, r_{0} and $\beta_{a c}$ from those values.

V_{BE} (volt)	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	V_{CE} (volt)	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
0.625	25	5	2.5
0.675	125	5	12.5
0.675	125	10	13

15. Convert the following numbers accordingly.
a) $42_{(10)}=$ \qquad (2) $=$ \qquad
b) $7 \mathrm{E}_{(16)}=$ \qquad $-(10)=$ \qquad
