Third Semester B.Sc. Examination, April/May 2021
 (F+R) (CBCS) (2017-18 and Onwards)
 PHYSICS - III
 Electricity and Magnetism

Time: 3 Hours
Max. Marks : 70
Instructions: i) Answer any five questions from each Part.
ii) Non programmable scientific calculators are allowed.
PART - A

Answer any five questions. Each question carries eight marks.
($5 \times 8=40$)

1. State and prove superposition theorem.
2. a) Discuss the decay of charge in C-R circuit, hence define time constant. Represent the same graphically.
b) Derive an expression for energy stored in an inductor.
3. a) State and explain Biot-Savart's law.
b) Derive an expression for torque on a current loop placed in a uniform magnetic field.
4. a) Mention the conditions for moving coil galvanometer to be dead beat and ballistic.
b) Explain how a BG can be used to determine high resistance by leakage.
(2+6=8)
5. a) State and explain Stoke's theorem.
b) Derive Maxwell's equation $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ and discuss the physical significance.
$(2+6=8)$
6. a) Define Poynting vector.
b) Show that electromagnetic waves are transverse in nature.
$(2+6=8)$
7. a) Mention the conditions under which AC bridges balanced.
b) Derive an expression for self inductance of a coil using Maxwell's bridge.
8. a) What is Thomson effect ? Distinguish between positive and negative effects.
b) How do you calculate the value of Thomson coefficient from thermoelectric diagram?

PART - B

Solve any five problems. Each problem carries four marks.
9. Calculate the value of R for maximum power to transfer and the maximum power delivered to it.

10. A coil of self inductance 10 H is in series with a resistance of 100Ω, connected 100 V dc supply. Calculate the time constant and instantaneous current after time interval of 0.1 s .
11. An electron after being accelerated through a p.d. of 15 kV , enters a uniform magnetic field of 0.04 T , perpendicular to its direction of motion. Calculate the radius of curvature of its trajectory $\left[\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}, \mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}\right]$.
12. A long solenoid of length 1 m and radius of cross section 1.5 cm has five layers of windings 850 turns each. If the solenoid carries current of 6 A , calculate the value of magnetic field and magnetic flux through cross section at its centre.
13. Find the divergence of \vec{A} at a point $(1,-1,1)$ where $\vec{A}=x^{2} z \hat{i}-2 y^{3} z^{2} \hat{j}+x y^{2} z \hat{k}$.
14. If the electric field between a parallel plate air capacitor of area $1.5 \mathrm{~m}^{2}$ changes at the rate of $10^{6} \mathrm{Vm}^{-1} \mathrm{~s}^{-1}$, calculate the displacement current.
15. A capacitor $2 \mu \mathrm{~F}$ and a resistor are connected to $240 \mathrm{~V}, 50 \mathrm{~Hz}$ ac in series. If the p.d. across resistor is equal to p.d. across capacitor. Calculate the resistance of the coil.
16. The thermo emf of a thermocouple in microvolts is given by the equation $e=16.34 \dot{\theta}-0.021 \theta^{2}$ when the junctions are at $0^{\circ} \mathrm{C}$ and $\theta^{\circ} \mathrm{C}$. Calculate
i) thermo electric power at $100^{\circ} \mathrm{C}$.
ii) the peltier emf at $100^{\circ} \mathrm{C}$.
PART - C
17. Answer any five questions. Each question carries two marks.
a) Is it possible to construct ideal voltage source ? Explain.
b) Is the law of conservation of energy violated due to production of back emf in L-R circuit? Explain.
c) Does an electric charge kept near a strong magnet experience force ? Explain.
d) What is the advantage of having two coils in Helmholtz tangent galvanometer?
e) When is the given vector function irrotational ? Explain.
f) How does the displacement current changes, when the applied frequency is changed in a capacitor?
g) Does resonant frequency of series LCR circuit depends upon resistance? Explain.
h) Does thermo-electric effect obey the law of conservation of energy?

