

MCA [2 YEARS] Syllabus and Scheme

2024 Admission Onwards

BOARD OF STUDIES

[COMPUTER SCIENCE AND APPLICATIONS]

St. Francis de Sales College
[Autonomous]

Electronics City P.O. Bengaluru 560100
Karnataka, INDIA

TABLE OF CONTENTS

S. No. PARTICULARS Page Number

1 Members of the Board of Studies 1

3 St. Francis de Sales College (Autonomous) - Vision and Mission 3

4 Department of Computer Science and Applications - Vision and Mission 4

5 Eligibility Criteria 5

6 Programme Structure and Duration 5

7 Promotion 5

8 Programme Outcome (PO) 6

9 Continuous Internal Assessment Criteria 8

10 Grading System and Grade Description 9

11 External Evaluation - Theory course 10

12 Course Matrix as per SEP 2024 11

13 24MCA11: Mathematical Foundations for Computer Science 12

14 24MCA12: Data Structures 15

15 24MCA13: Software Engineering 18

16 24MCA14: Database Management Systems 21

17 24MCA15: Computer Organization & Architecture 24

18 24MCA16P: Data Structures Lab 27

19 24MCA17P: Database Management Systems Lab 29

20 24MCA18P: Computer Organization and Architecture Lab 31

21 24MCA21: Object Oriented programming with Java 33

22 24MCA22: Computer Networks 36

23 24MCA23: Operating Systems 39

24 24MCA24: Design and Analysis of Algorithms 42

25 24MCA25: Artificial Intelligence 45

26 24MCA26: Employability and Skill Development 48

27 24MCA27P: Java Programming Lab 50

28 24MCA28P: Artificial Intelligence Lab Using Python 53

1

MEMBERS OF THE BOARD OF STUDIES

Sl. No. Name Designation

1. Dr. S. Sivagami,
 Program In-charge and Assistant Professor, St.
Francis de Sales College (Autonomous), Electronic
City, Bengaluru.

Chairperson

2. Dr. Hanumanthappa M
Senior Professor, Department of Computer Science,
Bangalore University

University Nominee

3. Dr. Sabeen Govind P V
Assistant Professor, Rajagiri College of Social Sciences

External Expert

4. Dr. Kousalya Govardhanan
Professor & Dean of Research, Dayananda Sagar
University Electronic City (Subject Expert nominated
by the Academic Council)

External Expert

5. Maria Joseph Frederic,
Senior Manager, IBM ISL R&D

Industry Expert

6. Mr. Phani Pramod,
Senior Development Manager, Essbase and Database
tools, Oracle

Industry Expert

7. Ms. Umme Hermain Shaikh
Associate Consultant, Tarento Technologies, Bengaluru

Alumni

8. Ms. Sailaja M
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

9. Ms. S. Annie Christella
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

2

10. Ms. Saranya C
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

11. Ms. Thejaswi Nandyala
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

12. Ms. Amruta Gadad
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

13. Ms. Sathiya Priya
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

14. Ms. Gowthami Gunasekar
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

15. Ms. Arundhati Ghosh,

Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

16. Mr. Joseph Rajakumar,
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

17. Mr. Kirubakaran,
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

18. Ms. Samadrita Chakraborty,
Assistant Professor, St. Francis de Sales College
(Autonomous), Electronic City, Bengaluru.

Member

3

ST. FRANCIS DE SALES COLLEGE (AUTONOMOUS)

ABOUT THE COLLEGE

St. Francis de Sales College (Autonomous), popularly known as SFS College, is one of the leading

Institutions of Higher Education in Bengaluru, Karnataka. Founded in 2004 with the vision of Excellence,

Efficiency, and Transformation, and the Mission of Love of God and Service to Humanity, the College is

run by the Missionaries of St. Francis de Sales (MSFS) of the South West India Province, also known as

Fransalians. The College is accredited with <A= grade by NAAC, approved by AICTE, recognized under

2(f) & 12(b) by UGC, and certified under ISO 9001:2015. Permanently affiliated to Bangalore University,

the College offers several degree programs at the Bachelors, Masters, and Doctoral levels under various

disciplines. In 2024, St. Francis de Sales College received the Autonomous status, and it remains as a

center for quality education, equipping the students with the skills, knowledge, and values needed to excel

and make a meaningful impact in the world.

VISION AND MISSION

VISION

Excellence, Efficiency and Transformation.

MISSION

Love of God and Service to Humanity.

4

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS

The Computer Science and Applications Department is dedicated to advancing the understanding

of computational systems and technologies through rigorous education, innovative research, and

community engagement. The department offers a comprehensive curriculum that blends theoretical

foundations with practical skills to prepare students for the rapidly evolving technology landscape.

With a focus on problem-solving, software development, and cutting-edge research, the department

strives to equip students with the tools and knowledge required to excel in a variety of computing

fields.

VISION AND MISSION

VISION

Empowering through technology, innovation and expertise

MISSION

Leveraging computation knowledge to drive societal progress and student success.

5

ELIGIBILITY CRITERIA

A candidate with any degree of a minimum of 3 years duration (10+2+3) of Bangalore university

or of any other University equivalent there in to with a minimum of 50% of marks in the aggregate

of all subjects including languages, if any, provided further, that the candidate has studied

Mathematics / Computer science /Business Mathematics / Statistics / Computer Applications /

Electronics as a subject at PUC level or equivalent HSC (XII Standard) or at Degree level is eligible

for admission to MCA Course. Relaxation to SC/ST, Group I be extended as per university norms.

PROGRAMME STRUCTURE AND DURATION

The programme is for Two (02) years consisting of Four Semesters altogether. A candidate shall

complete his/her degree within Two (2) academic years from the date of his/her admission to the

first semester. A Student who successfully completes Two (02) years of the programme will be

awarded Master’s in Computer Applications (MCA) by Bangalore University. The maximum

period for completion of course shall be four years from the date of admission. To be eligible for

the award of the MCA degree, a candidate shall have completed the scheme of training and passed

in all subjects prescribed for the Course.

PROMOTION

A candidate who has obtained a minimum of 40% marks in all the Semesters in each subject shall

be eligible for a pass and 50% of the aggregate inclusive of internal assessment marks obtained in

all subjects put together. A candidate is allowed to carry over all previous uncleared (Failed) theory

and practical papers to subsequent semesters from first to fourth semester.

6

PROGRAM OUTCOME (PO)

PO1 Computational
Knowledge

Apply knowledge of computing fundamentals, computing specialization,
mathematics, and domain knowledge appropriate for the computing
specialization to the abstraction and conceptualization of computing
models from defined problems and requirements.

PO2 Problem Analysis Identify, formulate, research literature, and solve complex computing
problems reaching substantiated conclusions using fundamental
principles of mathematics, computing sciences, and relevant domain
disciplines.

PO3 Design /Development
of Solutions

Design and evaluate solutions for complex computing problems, and
design and evaluate systems, components, or processes that meet
specified needs with appropriate consideration for public health and
safety, cultural, societal, and environmental considerations.

PO4 Conduct Investigations
of Complex Computing
Problems

Use research-based knowledge and research methods including design of
experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions

PO5 Modern Tool Usage Create, select, adapt and apply appropriate techniques, resources, and
modern computing tools to complex computing activities, with an
understanding of the limitations.

PO6 Professional Ethics Understand and commit to professional ethics and cyber regulations,
responsibilities, and norms of professional computing practice.

PO7 Life-long Learning Recognize the need, and have the ability, to engage in independent
learning for continual development as a computing professional.

PO8 Project management
and finance

Demonstrate knowledge and understanding of the computing and
management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in
multidisciplinary environments.

PO9 Communication
Efficacy

Communicate effectively with the computing community, and with
society at large, about complex computing activities by being able to
comprehend and write effective reports, design documentation, make
effective presentations, and give and understand clear instructions.

PO10 Societal and
Environmental
Concern

Understand and assess societal, environmental, health, safety, legal, and
cultural issues within local and global contexts, and the consequential
responsibilities relevant to professional computing practice.

PO11 Individual and Team
Work

Function effectively as an individual and as a member or leader in diverse
teams and in multidisciplinary environments.

PO12 Innovation and
Entrepreneurship

Identify a timely opportunity and using innovation to pursue that
opportunity to create value and wealth for the betterment of the individual
and society at large.

8

ACADEMIC YEAR 2024-25
PG CONTINUOUS INTERNAL ASSESSMENT

THEORY:
1. Continuous Internal Assessment (C1 & C2) – 30 marks
2. End Semester Examination – 70 marks

PRACTICAL:
1. Continuous Internal Assessment (C1 & C2) – 30 marks
2. End Semester Practical Examination – 70 marks

PROJECT / DISSERTATION: As per AICTE norms

Sl. No Assessments Components Marks & Attendance IA Marks

1. Attendance and Regularity C1 10 10

2. Quality of Work and Documentation C1 10 10

 3. Presentation C1 10 10

TOTAL 30

S.NO ASSESSMENTS COMPONENTS
MARKS &

ATTENDANCE
IA MARKS

THEORY AND PRACTICAL SUBJECTS

1 Unit Test (25% of Syllabus) C1 25 2.5

2 Case Study / Assignment C1 10 5

3 Seminar C1 10 5

3
Mid Semester Examination (70% of

Syllabus)
C2 70 10

4
Unit test II (25% of Syllabus covered

after the MSE)
C1 25 2.5

4

Attendance

C2

Minimum of

5

● 75.00-79.99% - 1 Mark 75%
● 80.00-84.99% - 2 Marks

● 85.00-89.99% - 3 Marks

● 90.00-94.99% - 4 Marks

● 95.00-100.00% - 5 Marks

Total 30 marks

9

GRADING SYSTEM

Table of Conversion of % Marks to grade point:

% Marks Grade Point
96-100 10

91-95 9.5

86-90 9.0

81-85 8.5

76-80 8.0

71-75 7.5

66-70 7.0

61-65 6.5

56-60 6.0

51-55 5.5

46-50 5.0

41-45 4.5

40 4

Final Result/Grade Description:

Semester/

Programme % of

Marks

Semester GPA/

Programme/

CGPA

Grade

Alpha Sign

Result/Class

Description

90.1-100 9.01-10.00 O Outstanding

80.1-90.0 8.01-9.00 A+
First Class

Exemplary

70.1-80.0 7.01-8.00 A
First Class

Distinction

60.1-70.0 6.01-7.00 B+ First Class

55.1-60.0 5.51-6.00 B High Second Class

50.1-55.0 5.01-5.50 C Second Class

40.0-50.0 4.00-5.00 P Pass Class

Below 40 Below 4.0 F Re-Appear

10

EXTERNAL EVALUATION

THEORY COURSE

There shall be a written semester examination at the end of each semester for all theory courses

of duration of 3 hours with maximum 70 marks. A question paper may contain short answer type

and long essay type questions. The question paper pattern is as follows.

SECTIONS TYPE OF QUESTIONS MARKS NUMBER OF QUESTIONS TO
BE ANSWERED

A CONCEPTUAL

6

5 OUT OF 8

B ANALYTICAL AND
PROBLEM SOLVING

10

4 OUT OF 6

TOTAL 70 MARKS

11

DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS
MCA COURSE MATRIX AS PER 2024

SEMESTER I

 SEMESTER II

Total
Teaching

hours
Duration of
Exam (hrs.) Marks Credits

Subjects
Paper/Subject
Code IA Uni. Exam Total

Object Oriented
programming with Java

24MCA21
60 3 30 70 100 4

Computer Networks 24MCA22
60 3 30 70 100 4

Operating Systems 24MCA23
60 3 30 70 100 4

Design and Analysis of
Algorithms

24MCA24
60 3 30 70 100 4

Artificial Intelligence 24MCA25 60 3 30 70 100 4

Employability and Skill
Development

24MCA26
60 3 30 70 100 2

Java Programming Lab 24MCA27P 60 3 30 70 100 2

Artificial Intelligence
Lab Using Python

24MCA28P
60 3 30 70 100 2

Internship 24MCA29I 60 3 30 70 100 2

Total Credits 28

Total
Teaching

hours
Duration of
Exam (hrs.) Marks Credits

Subjects
Paper/Subject
Code IA

Uni.
Exam Total

Mathematical Foundations
for Computer Science

24MCA11 60 3 30 70 100 4

Data Structures 24MCA12 60 3 30 70 100 4

Software Engineering 24MCA13 60 3 30 70 100 4

Database Management
Systems

24MCA14 60 3 30 70 100 4

Computer Organization &
Architecture

24MCA15 60 3 30 70 100 4

Data Structures Lab 24MCA16P 60 3 30 70 100 2

Database Management
Systems Lab

24MCA17P 60 3 30 70 100 2

Computer Organization
and Architecture Lab

24MCA18P 60 3 30 70 100 2

MOOC Course 24MCA19M Minimum
4 Week

3 30 70 100 2

Total Credits 28

12

24MCA11: MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE

Course Code 24MCA11 Course
Title

Mathematical Foundation for Computer Science

Course Type DSC Contact
Hours

4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I INTRODUCTION 15 HOURS
Sets: Basic Concepts Relations: Binary relations, Equivalence relations

and partition. Functions: Different types of functions, Composition and

Inverse, Recursive and hashing functions. Mathematical Induction.

Partial Ordering Relations Partially ordered set: Representation of Poset

- Hasse Diagram, LUB, GLB, well ordered set, meet and join of elements.

Lattices as partially ordered sets: Definition and basic properties, Lattices

as algebraic systems, sub lattices. Basic Concepts of Automata Theory:

Alphabets, Strings, Languages, DFA, NFA and their representations.

II PROBABILITY 16 HOURS
Probability: The Concept of Probability-Sample Spaces, Probability as

Relative Frequency, Axiomatic Definition of Probability, Properties of

Probability, Additive Property, Conditional Probability, Multiplicative

Law of Probability, Law of Total Probability, Bayes’ Formula,
Independent Events. Random Variables, Distribution Functions, Discrete

Random Variables, Continuous Random Variables, Probability Mass

Function and Probability Density Function, Expectation and Variance,

Functions of Random Variables, Some important Probability

Distributions: Discrete - Bernoulli Trials and Binomial distribution,

Geometric distribution and Poisson distribution, Continuous - Uniform

distribution, Normal distribution and Exponential distribution.

III LOGIC 14 HOURS
Logic Mathematical logic, Logical operators – Conjunction, Disjunction,

Negation, Conditional and biconditional. Truth tables. Equivalence

formula, Tautology, methods of proof-direct, indirect, contradiction,

equivalence and induction. Inference Theory, Validity by truth table,

Rules of Inference. . Predicate calculus: Predicates , statement functions,

variables and quantifiers, predicate formulas, free and bound variables,

the universe of discourse.

13

IV GRAPH THEORY 15 HOURS

Graph Theory Basic terminology: Different types of graphs – Directed

and undirected, Simple, Pseudo, Complete, Regular, Bipartite. Incidence

and degree, Pendant and Isolated vertex and Null graph. Isomorphism,

Sub graphs, Walk, Path and Circuit, Connected and disconnected graphs

and components, operations on graphs. Euler Graphs, Fleury’s
Algorithm, Hamiltonian circuits and paths. Traveling salesman problem.

Matrix representation of graphs – Incidence and Adjacency matrices.

REFERENCE BOOKS:

1. Kenneth H. Rosen: Discrete Mathematics and Its Applications, 8th Edition, McGraw-Hill, 2019.

2. J.P. Tremblay, R. Manohar: Discrete Mathematical Structures with Applications to Computer

Science, 1st Edition, McGraw-Hill, 2001.

3. Sheldon M. Ross: A First Course in Probability, 10th Edition, Pearson, 2019.

4. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory,

Languages, and Computation, 3rd Edition, Pearson, 2013.

5. Douglas B. West: Introduction to Graph Theory, 2nd Edition, Pearson, 2001.

COURSE OBJECTIVES:

Applying mathematical concepts: Students will learn to relate practical examples to the

appropriate mathematical model and interpret the associated operations and terminology.

Analyzing and solving problems: Students will learn to analyze and solve practical computing

problems.

14

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1 Understand and apply set theory, relations, and functions to solve mathematical

problems, including recursive and hashing functions, and represent partially ordered

sets using Hasse diagrams.

CO2 Analyze and solve problems related to probability theory, including conditional

probability, Bayes' formula, and probability distributions such as binomial, geometric,

Poisson, normal, and exponential distributions.

CO3 Apply principles of mathematical logic including truth tables, logical operators, and

rules of inference, to establish the validity of arguments and perform logical proofs

using various methods.

CO4 Explore the fundamental concepts of automata theory, including deterministic and

non-deterministic finite automata (DFA and NFA), and their application in formal

language theory.

CO5 Understand and apply graph theory concepts, including graph types, Euler and

Hamiltonian paths, matrix representations, and algorithms like Fleury’s Algorithm, to

solve real-world problems such as the traveling salesman problem.

TEACHING PEDOGOGY

Active Learning through Practical Application, Conceptual Understanding, Problem-Based Learning,

Collaborative Learning, Use of Technology, Scaffolding and Differentiation, Assessment for

Learning. Formative Assessment: Regular quizzes, problem-solving sessions, and practical tasks on

key concepts such as Accrual Basis and Going Concern. This helps in tracking student progress and

understanding. Summative Assessment: Evaluate students' ability to analyzing the problem and apply

the algorithm.

SKILL DEVELOPMENT

1. Logical Reasoning and Analytical Skills

2. Problem-Solving Skills

3. Data Analysis and Modeling.

4. Algorithmic thinking.

15

24MCA12: DATA STRUCTURES
Course Code: 24MCA12 Course Title Data Structures

Course Type DSC Contact
Hours

4 Hours per Week Total: 60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I Fundamentals of Data Structures and Arrays 15 Hours

Introduction to Data Structures: Data Types, Structures; Arrays: Polynomial
Representations, Operations: Polynomial Addition, Multiplication, Sparse
Matrices; Stack: Definition and Concepts, Stack Operations, Applications: Infix to
Postfix Conversion, Evaluation of Arithmetic Expressions.

II Queues, Dynamic Memory, and Linked Lists: 16 Hours

Queues, Queue Representation, Circular Queue, Double-Ended Queue; Priority
Queue: Implementation using Heap Sort; Dynamic Memory Allocation Functions:
malloc, calloc, realloc, free; Linked Lists: Operations: Insertion, Searching,
Removing, Updating, Sorting, Reversing; Polynomials: Representation, Addition,
Multiplication using Linked Lists

III Linear and Non-Linear Data Structures 13 Hours

Linear Data Structures: Linked Stacks, Linked Queues, Circular Linked List,
Double-Ended Queue, Doubly Linked List, Circular Doubly Linked List; Non-
Linear Data Structures: Graphs: Representation (Adjacency Matrix, Adjacency
List), Merits and Demerits; Searching: Linear Search, Binary Search

IV Trees and Advanced Data Structures 16 Hours

Trees: Basic Terminology, Binary Trees, Binary Search Trees, Binary Search Tree
Operations: Insertion, Deletion, Searching, Traversal (In-Order, Pre-Order, Post-
Order), Threaded Binary Tree: Operations, Balanced Trees: AVL Trees (Properties,
Insertion, Deletion, Rotations) Advanced Data Structures: Red-Black Trees:
Properties, B-Trees: Operations (Searching, Node Creation, Splitting, Insertion,
Deletion), B+ Trees: Definition and Structure, Disjoint Sets: Operations, Linked
List Representation, Disjoint-Set Forests.

16

REFERENCE BOOKS:

1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 4th Edition, Pearson, 2022.

2. Reema Thareja, "Data Structures Using C", 3rd Edition, Oxford University Press, 2020.

3. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and

Algorithms in Python", 2nd Edition, Wiley, 2020.

4. D.S. Malik, "Data Structures and Algorithms: A Modern Approach", 1st Edition, Cengage

Learning, 2021.

5. Harry H. Chaudhary, "Data Structures and Algorithms with C++: Modern Approach for

Beginners", 1st Edition, Infinite Study, 2021.

COURSE OBJECTIVES:

The course aims to introduce fundamental concepts of algorithms and data structures, focusing on

their design, analysis, and implementation. It seeks to equip students with the skills to develop

efficient algorithms and apply them to solve computational problems using the C programming

language. Additionally, the course covers essential data structures (arrays, linked lists, stacks,

queues, and trees) and fundamental algorithms for sorting, searching, and pattern matching,

preparing students for real-world problem-solving and software development tasks.

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1 Understand the fundamental concepts of algorithms, including their design, growth of
functions, and efficiency, as well as their importance in solving computational problems.

CO2 Develop proficiency in basic programming concepts in C, including syntax, control
structures, data types, input/output operations, and the use of loops for iteration.

CO3 Gain knowledge of fundamental data structures, such as arrays, strings, and linked
lists, and apply operations like traversal, insertion, and deletion to solve practical
programming problems.

CO4 Master the implementation and application of advanced data structures, including
stacks and queues, and their role in function call management, expression evaluation, and
data organization.

CO5 Analyze and implement basic sorting, searching, and pattern matching algorithms,
understanding their efficiencies and applying them to real-world problems through a
mini-project.

17

TEACHING PEDAGOGY
The teaching pedagogy for Algorithms and Basic Programming Concepts combines lectures with

hands-on programming sessions to introduce core concepts and reinforce them through practical

implementation in C. Problem-solving exercises and collaborative learning encourage students to design,

analyze, and implement algorithms, while visual demonstrations help clarify complex ideas like sorting

and tree traversal. Finally, mini-projects and continuous assessments promote the application of learned

concepts to real-world problems, fostering deeper understanding and skill development.

SKILL DEVELOPMENT
● Algorithmic Thinking

● Programming Proficiency in C

● Data Structure Manipulation

● Practical Problem-Solving

18

24MCA13: SOFTWARE ENGINEERING

Course Code: 24MCA13 Course Title Software Engineering

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I Introduction to Software Engineering and Agile Methodologies (15 hours)

Introduction to Software Engineering: Definition, characteristics, software

development life cycle (SDLC), software myths; Software Process Models: Waterfall

model, Incremental model, Prototyping model, Spiral model, Rapid Application

Development (RAD) model; Agile Methodology: Overview of Agile, Scrum

framework (Scrum Master, Product Owner, Sprint cycles), Extreme Programming (XP),

Lean Software Development; Agile Metrics and Tools: Velocity, burn-down charts,

cumulative flow diagrams. Tools such as JIRA, Trello, and Asana for agile project

tracking and management; Requirements Engineering: Functional and non-functional

requirements, requirement elicitation techniques, requirement analysis and

specification, use cases; Project Planning and Risk Management: Project

management processes, estimation techniques (COCOMO, Function Point Analysis),

risk management strategies.

II Software Design, Architecture, and Agile Design Principles (15 hours)

Design Concepts: Design principles – Abstraction, refinement, modularity, cohesion,

and coupling, functional independence; Architectural Design: Software architecture,

architectural styles, component-based design, microservices architecture, design

patterns; Agile Design Principles: Agile design practices like refactoring, simplicity,

and emergent design; Detailed Design: Transaction and transformation mapping,

refactoring of designs, use of design principles in Agile frameworks; User Interface (UI)
Design: Basics of UI design, interface analysis, interface design steps, prototyping;

Unified Modeling Language (UML) Diagrams: Use case diagrams, class diagrams,

sequence diagrams, activity diagrams.

19

III Software Quality, Agile Testing Strategies and Software Maintenance (15 hours)

Software Quality Assurance (SQA): Quality concepts, SQA activities, ISO standards,

CMMI, TQM, Six-Sigma; Agile Testing Strategies: Test-driven development (TDD),

behavior-driven development (BDD), continuous testing in Agile environments;

Verification and Validation: Reviews, inspections, walkthroughs, and audits;

Software Metrics and Measurements: Process, project, and quality metrics. Software
Maintenance: Types of maintenance (corrective, adaptive, perfective, preventive),

maintenance process;

IV Re-engineering, Project Management, and Agile Tools (15 hours)

Re-engineering & Reverse Engineering: Concepts and processes; Software
Configuration Management: Version control, change management, configuration

audits, software versioning; Agile Project Management Tools: Introduction to Agile

project management tools such as JIRA, Git, Trello, and other collaboration tools used

in Agile environments; Software Project Management: Project planning, scheduling,

estimation techniques (COCOMO, Function Point Analysis), risk management;

Quality Management: Quality assurance, review techniques, product and process

metrics, and quality models.

REFERENCE BOOKS:

1. "Software Engineering: A Practitioner's Approach" by Roger S. Pressman and Bruce R. Maxim

9th edition, 2020 (McGraw-Hill Education)(VitalSource)

2. "Software Engineering" by Ian Sommerville 10th edition, 2015

3. "Object-Oriented Software Engineering Using UML, Patterns, and Java" by Bernd Bruegge and

Allen H. Dutoit 3rd edition, 2009

4. "Software Engineering Fundamentals" by Richard H. Thayer and Mark J. Christensen 1st

edition, 2005

5. "Applied Software Project Management" by Andrew Stellman and Jennifer Greene 1st edition,

2005

COURSE OBJECTIVES:

The course aims to provide students with a thorough understanding of software engineering principles

and practices, particularly in agile development methodologies. It covers the fundamentals of

software processes, requirements gathering, and the importance of teamwork in agile environments.

Students will learn to apply UML and design models for software development and engage in code

reviews to evaluate and enhance software quality. This course prepares students to navigate the

complexities of modern software projects, emphasizing collaboration, time management, and quality

assurance techniques.

20

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
Understand and Apply Agile Software Development Principles.

CO2 Analyze and Implement UML and Design Models.

CO3 Collaborate in Agile Teams to Address Teamwork and Role Schemes.

CO4 Evaluate Software Design through Code Reviews and Object-Oriented Design.

CO5 Apply effective time management and measurement techniques in software projects to

enhance productivity and ensure quality outcomes.

TEACHING PEDAGOGY

Lecture-based instruction on Agile software development principles, process models, and teamwork

dynamics in Agile environments. Lab sessions focused on practical application of UML modeling, design

processes, and code reviews through group projects and collaborative exercises. Interactive workshops to

develop skills in time management, measurement activities, and quality assurance techniques within software

projects. Case studies and reflective practices to analyze real-world Agile software development scenarios

and enhance understanding of team collaboration and leadership roles.

SKILL DEVELOPMENT

1. Proficiency in Agile software development methodologies and their application in various project

environments.

2. Practical skills in UML design, object-oriented design concepts, and software architecture principles.

3. Hands-on experience in collaborative teamwork, role assignments, and effective communication in

Agile teams.

4. Understanding and application of quality assurance practices, including test-driven development and

code review processes.

5. Mastery of reflective practices and iterative development, enabling continuous improvement in

software engineering projects.

21

24MCA14: DATABASE MANAGEMENT SYSTEMS

Course Code: 24MCA14 Course Title Database Management Systems

Course Type DSC Contact Hours 4 Hours per Week Total: 60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I
UNIT 1: DATABASES AND DATABASE USERS: 15 HOURS

Introduction to Databases, Characteristics of the Database Approach, Actors on the Scene

and Workers Behind the Scene, Advantages of Using DBMS Approach, Brief History of

Database Applications; Database System Concepts and Architecture: Data Models,

Schemas, Instances, Three-Schema Architecture and Data Independence, Database

Languages and Interfaces, The Database System Environment, Centralized and Client-

Server Architectures, Classification of Database Management Systems.

II
UNIT 2: DATA MODELING USING ER MODEL: 14 HOURS

Using High-Level Conceptual Data Models for Database Design, Entity Types, Entity

Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and Structural

Constraints, Weak Entity Types, Refining the ER Design, Company Database Diagrams,

Naming Conventions and Design Issue, File Organization and Storage: Secondary

Storage Devices, Heap Files, Sorted Files, Hashing Techniques, Single-Level Ordered

Index, Multi-Level Indexes, Indexes on Multiple Keys, Other Types of Indexes.

III
UNIT 3: RELATIONAL ALGEBRA & SQL: 16 HOURS

 Features, Codd’s Rule, Structure of Relational Databases, Relational Algebra with
Extended Operations, Modifications of Database, Relational Calculus (Idea), SQL: Basic

Structure, Set Operations, Aggregate Functions, Null Values, Nested Subqueries, Derived

Relations, Views, Join Relations, DDL in SQL, MySQL: Basic Commands, Data Types,

CRUD Operations, MySQL: Introduction to Indexing, Joins, Views, and Subqueries,

MongoDB: Basic Commands, Data Types, Collections, Documents, Queries, Indexes,

Aggregation Framework.

IV
UNIT 4: TRANSACTION PROCESSING SYSTEM: 15 HOURS

Introduction to Transaction Processing, Transaction and System Concepts, Desirable

Properties of Transactions (ACID), Transaction Support in SQL, Concurrency Control

Techniques: Two-Phase Locking, Timestamp Ordering, Multi-Version, and Validation-

Based Techniques, Recovery Techniques: Recovery Concepts, Recovery in Multi-

Database Systems, Database Backup, and Recovery from Catastrophic Failures.

22

REFERENCE BOOKS:

1. Elmasri and Navathe: Fundamentals of Database Systems, 7th Edition, Addison -Wesley, 2016.

2. Silberschatz, Korth and Sudharshan Data base System Concepts, 7th Edition, Tata McGraw Hill,

2019.

3. Alex Petrov: Database Internals: A Deep Dive into How Distributed Data Systems Work, 1st

Edition, O'Reilly Media, 2019.

4. Martin Kleppmann: Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems, 1st Edition, O'Reilly Media, 2017.

5. Ramez Elmasri and Shamkant Navathe: Database Systems: A Practical Approach to Design,

Implementation, and Management, 6th Edition, Pearson, 2016

COURSE OBJECTIVES

The course aims to introduce students to the foundational concepts of database systems, focusing

on the design, implementation, and management of databases. It covers data modeling, relational

database theory, SQL programming, and database integrity. Additionally, it explores advanced

topics like transaction processing, concurrency control, and recovery techniques, preparing

students to handle complex database systems in real-world applications.

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1 Understand the core concepts of databases, including database models, schemas,
architectures, and the role of DBMS in data management.

CO2
Design databases using the Entity-Relationship (ER) model, defining entity
sets, attributes, keys, relationships, and refining database designs.

CO3 Apply relational algebra and SQL for querying and managing relational databases,
including creating, modifying, and managing database structures and data.

CO4
 Develop stored procedures, triggers, and cursors using PL/SQL, and ensure
database integrity through the use of rules and constraints.

CO5
 Implement transaction processing, concurrency control, and recovery techniques
to maintain the reliability and consistency of databases, especially in multi-database
environments.

23

TEACHING PEDOGOGY
Lectures will introduce core concepts such as database models, SQL programming, and transaction processing,

supplemented by real-world examples to illustrate their applications. Interactive lab sessions will allow students

to engage in database design, implement SQL queries, and work with PL/SQL, reinforcing theoretical knowledge

through practical exercises. Group projects will encourage collaboration in designing and managing a database

system, while case studies will provide insights into database applications in various industries.

SKILL DEVELOPMENT

● Database Design Skills: Learn to design efficient and scalable databases using conceptual and logical data

models, ensuring adherence to best practices in database design.

● Proficiency in SQL and PL/SQL: Gain hands-on experience in writing complex SQL queries, creating stored

procedures, and managing database integrity using triggers and constraints.

● Transaction Management and Concurrency Control: Develop skills in handling transactions, ensuring

consistency in multi-user environments, and applying concurrency control techniques.

● Database Backup and Recovery: Learn techniques for safeguarding databases, including implementing

backup strategies and recovery methods for catastrophic failures.

24

24MCA15: COMPUTER ORGANIZATION & ARCHITECTURE

Course Code 24MCA15 Course Title Computer Organization & Architecture

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I Unit 1: 15 Hours

Input-Output Organization & Memory Unit: Accessing Input/Output devices; Interrupts; Data

transfer schemes - programmed I/O and DMA transfer; data transfer schemes for microprocessors.

Memory Unit Memory Hierarchy; Primary memory, Secondary Memory: Magnetic Tape, Magnetic

Disk, Optical disk, Magneto-Optical Disk; Concepts of auxiliary, Associative, Cache And Virtual

Memory, DMA, DMA Transfer modes, sequential access, direct access storage devices

II Unit 2: 16 Hours

Comparative Study of 8086 and 8088 : Evolution from 8080/8085 to 8086, Evolution from

8086 to 8088, 8086 Microprocessor: Pin diagram of 8086, Signal group of 8086, Internal

organization of 8086, 8088 Microprocessor and its basic architecture, Pentium Processor:

History, Block diagram, Dual Core Processor.

III Unit 3: 14 Hours

Transfer And Micro-Operations: Register Transfer Language, Register Transfer, Bus and

Memory Transfers, Arithmetic Micro-Operations, Logic Micro-Operations, Shift Micro-

Operations, Arithmetic logic shift unit. Micro-programmed Control: Control Memory,

Address Sequencing, Micro-Program example, Design of Control Unit. Input Output: I/O

interface, Programmed IO, Memory Mapped IO, Interrupt Driven IO, DMA. Instruction level

parallelism: Instruction level parallelism (ILP)-overcoming data hazards, limitations of ILP.

IV Unit 4: 15 Hours

Multi-Processor Organization & Pipelining: Parallel Processing, Concept and Block

Diagram, Types (SISD, SIMD, Interconnect network, MIMD, MISD), Future Directions for

Parallel Processors, Performance of Processors, Pipelining: Data Path, Time Space Diagram,

Hazards. Instruction Pipelining, Arithmetic Pipelining

25

COURSE OBJECTIVES:

This course aims to provide a comprehensive understanding of the fundamental concepts of

computer organization and architecture, including number systems, digital logic circuits, micro-

operations, memory systems, and processor architectures. By the end of the course, students will

have practical skills in handling 8085 assembly language programming and will understand the

relevance of advanced processor and memory architectures in modern computing.

REFERENCE BOOKS:

1. Hayes, J.P., Computer Architecture and Organization, McGraw Hill (1998), 3rded.

2. William Stallings, <Computer Organization and Architecture designing for

performance=, 10th edition, Pearson(2016)

3. Subrata Ghoshal, <Computer Architecture And Organization=, Pearson India(2011).

4. Andrew S. Tanenbaum < Structured Computer Organization=, 5th edition, Pearson

Education Inc(2006).

5. Carl Hamacher, Zvonks Vranesic,SafeaZaky, <Computer Architecture And

Organization=, 5 th edition McGraw Hill New Delhi,India(2002).

6. Mano M Morris, =Computer System Architecture=, 3rd edition Pearson India(2019)

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1 Understand the knowledge in Input-Output Organization & Memory Unit

CO2 Apply knowledge of 8085 ,8086 and 8088 architecture to write, assemble, and execute basic

assembly language programs, demonstrating proficiency in instruction cycles and addressing

modes.

CO3 Explain the basic and advanced processor architectures (CISC, RISC, SIMD, pipelining), and

differentiate between them based on instruction sets and processing efficiencies.

CO4 Execute register transfer, arithmetic, logic, and shift micro-operations, and manage input-output

interfacing using programmed and interrupt-driven methods.

CO5 Explain the basic and advanced processor architectures about Multi-Processor Organization

& Pipelining

26

TEACHING PEDAGOGY

Lecture-based instruction to introduce theoretical concepts and architectures. Problem-solving and

practical exercises focusing on digital arithmetic, micro-operations, and instruction-level parallelism.

Group discussions and case studies on advanced topics like SIMD, pipelining, and parallel processing.

SKILL DEVELOPMENT

● Mastery of number system conversion and binary arithmetic operations.

● Practical skills in designing and simplifying digital logic circuits for computing purposes.

● Ability to differentiate and optimize processor design and memory architecture for enhanced

computing performance.

● Hands-on experience in 8086 assembly language programming.

● Understanding of instruction-level parallelism and pipelining concepts for performance

enhancement in multi-core and parallel computing systems.

27

24MCA16: DATA STRUCTURES LAB
Course Code: 24MCA16P Course Title Data Structures Lab

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus
LIST OF DATA STRUCTURES LAB PROGRAMS

1. Program to represent Linear Search and Binary Search.

2. Program to represent sorting procedures (Selection Sort, Bubble Sort, and

Insertion Sort).

3. Polynomial addition using arrays.

4. Sparse matrix manipulation using arrays.

5. Program to allocate two-dimensional arrays dynamically.

6. Program to demonstrate the use of realloc().

7. Stack using arrays.

8. Queue using arrays.

9. Circular Queue using arrays.

10. Program to represent Singly Linked List.

11. Program to represent Doubly Linked List.

12. Program to represent Circular Linked List.

13. Polynomial addition using linked lists.

14. Program to represent a Queue using linked lists.

15. Program for a Binary Search Tree using recursion.

16. Program for Binary Search Tree Traversals (without recursion).

17. Program to represent a Graph using arrays.

18. Program for Infix to Postfix conversion.

19. Program for Evaluation of Postfix Expressions.

20. Program to represent a Graph using linked lists.

28

COURSE OBJECTIVES:
The course aims to provide students with a comprehensive understanding of fundamental data

structures and their practical applications. It covers array, linked list, stack, queue, tree, and graph

operations, along with sorting and searching algorithms. Students will gain hands-on experience in

implementing and manipulating data structures, as well as analyzing their performance. This course

prepares students to design, optimize, and apply data structures to solve complex computational

problems efficiently.

COURSE OUTCOME

COURSE CODE COURSE DESCRIPTION
CO1 Students will understand and implement recursive algorithms like factorial

computation and Fibonacci sequence generation.

CO2 Students will gain the ability to perform basic operations on integers and strings,
such as swapping values, counting digits, and manipulating strings without built-
in functions.

CO3 Students will learn to perform fundamental operations like traversal, insertion,
and deletion on arrays and linked lists (both singly and doubly linked).

CO4 Students will implement and work with data structures such as stacks, queues,

and binary trees, including various tree traversal methods.

CO5 Students will implement sorting and searching algorithms and analyze their
performance

TEACHING PEDAGOGY
Lecture-based instruction to introduce the concepts of arrays, linked lists, stacks, queues, trees, and

sorting/searching algorithms. Problem-solving and practical exercises focusing on implementing and

manipulating these data structures in C. Group discussions and case studies on real-world applications like

text editors and inventory management systems using arrays and linked lists.

SKILL DEVELOPMENT

1. Mastery of basic algorithmic thinking and problem-solving in C.

2. Practical skills in implementing and manipulating arrays, linked lists, and queues.

3. Proficiency in stack operations using both arrays and linked lists.

4. Hands-on experience in implementing binary trees and binary search trees.

5. Understanding of sorting and searching algorithms with performance optimization.

29

 24MCA17: DATABASE MANAGEMENT SYSTEMS LAB
Course Code: 24MCA17P Course Title Database Management Systems Lab

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus
List of Database Management Systems Lab Programs

1. Write a MySQL script to create a schema with tables, applying constraints such as PRIMARY
KEY, FOREIGN KEY, UNIQUE, and NOT NULL.

2. Develop a MySQL script to create tables with data types like VARCHAR, INT, DATE, etc.

3. Write a MySQL script to create a new database schema and assign appropriate permissions to users
(e.g., GRANT, REVOKE).

4. Write a MySQL program to create a table that reflects different data types and applies constraints
such as CHECK and DEFAULT.

5. Write a MySQL script to demonstrate how to drop a table.

6. Write a MySQL script to modify an existing table by adding or modifying columns (e.g., ALTER
TABLE).

7. Write a MySQL script to drop a specific column from an existing table.

8. Write a MySQL script to demonstrate basic SQL queries such as SELECT, DISTINCT, WHERE

9. Write a MySQL script to demonstrate set operations like UNION, INTERSECT, and EXCEPT

10. Write a MySQL script to demonstrate the use of nested queries (e.g., subqueries in SELECT,
WHERE, and FROM).

11. Write a MySQL script that demonstrates the use of the EXISTS function to test the existence of
rows in subqueries.

12. Write a MySQL program to handle NULL values, including filtering for NULL in queries.

13. Write a MySQL script to demonstrate the use of aggregate functions like COUNT, SUM, AVG,
MIN, and MAX.

14. Write a MySQL script to demonstrate the use of GROUP BY and HAVING for grouping and
filtering query results.

15. Write a MySQL script to sort query results using the ORDER BY clause and perform basic
arithmetic operations within queries.

16. Write a MongoDB script to create a collection and insert documents with various fields, including
nested fields.

17. Write a MongoDB script to demonstrate CREATE, READ, UPDATE, and DELETE operations
on a collection.

18. Write a MongoDB script to create indexes on a collection and demonstrate queries that benefit
from these indexes.

19. Write a MongoDB script to demonstrate the use of the aggregation pipeline, including $group,
$match, and $sum.

20. Write a MongoDB script to use change streams to monitor changes in a collection (equivalent to triggers in
relational databases).

30

COURSE OUTCOME
COURSE CODE COURSE DESCRIPTION

CO1 Design and implement E-R models, and convert them into relation tables for real-

world scenarios.

CO2 Create, modify, and manipulate databases, tables, and records using basic

and advanced SQL commands.

CO3 Apply SQL to query databases using aggregate functions, GROUP BY,

HAVING, and EXISTS clauses.

CO4 Perform advanced SQL operations such as view creation, transactions, and

database backup/restore.

CO5 Analyze and optimize SQL queries to retrieve specific information

based on complex conditions in large datasets.

TEACHING PEDAGOGY

Lecture-based instruction to introduce the concepts of database management systems, E-R modeling, and

SQL. Practical exercises and lab sessions focused on SQL query formulation and optimization. Group

discussions on real-world scenarios like bank and college systems, emphasizing normalization, relational

integrity, and constraints.

SKILL DEVELOPMENT

1. Mastery of E-R modeling and converting relational models into tables.

2. Proficiency in using SQL for database creation, manipulation, and retrieval.

3. Ability to handle database backup, restoration, and transaction control.

4. Hands-on experience in writing optimized queries using complex SQL clauses.

5. Understanding of views, indexing, and relational constraints for efficient database management

COURSE OBJECTIVES:

The course aims to provide students with a comprehensive understanding of database management

systems and their practical applications. It covers database design using E-R modeling, relational

schema conversion, and SQL-based database creation, manipulation, and querying. Students will gain

hands-on experience in writing optimized SQL queries, managing transactions, and performing

database backup and restoration. This course prepares students to design, implement, and maintain

efficient and secure databases for real-world applications.

31

24MCA18: COMPUTER ORGANIZATION AND ARCHITECTURE LAB

Course Code: 24MCA18P Course Title Computer Organization and Architecture Lab

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus
LIST OF COMPUTER ORGANISATION AND ARCHITECTURE LAB PROGRAMS

1. HDL introduction

2. Realization of a Boolean Function. Minimize using K map and realize the same using truth table

3. Realize NAND and NOR Gate as universal gate

4. Design Half Adder and Full Adder

5. Design a Full Adder/ Subtractor using 2 half adder/ subtractor

6. Design Half Subtractor and Full Subtractor

7. Design 4 bit parallel Adder Subtractor Composite unit using IC7483 and 7486

8. Design 8:1 Multiplexer using two 4:1 Multiplexer

9. Implement logic function using Multiplexer.

10. 8-bit Addition, Multiplication, Division

11. 8-bit Register design

12. Memory unit design and perform memory operations.

13. 8-bit simple ALU design

14. 8-bit simple CPU design

15. Interfacing of CPU and Memory

COURSE OBJECTIVES:
The course aims to provide students with a thorough understanding of digital logic design, arithmetic

units, and basic computer organization. It covers the design and implementation of logic gates, adders,

subtractors, multiplexers, and memory units using hardware description languages (HDL) and

integrated circuits. Students will gain hands-on experience in designing 8-bit arithmetic units, ALUs,

and CPUs, along with CPU-memory interfacing. This course prepares students to design, simulate,

and analyze fundamental digital components and architectures used in modern computers.

32

TEACHING PEDAGOGY

Lecture-based instruction to introduce digital logic design, Boolean algebra, and computer architecture

fundamentals. Lab sessions and practical exercises will focus on designing and simulating digital

components using HDL and hardware. Group discussions and problem-solving on optimizing logic

circuits and interfacing memory units with CPUs. Case studies on modern computer architectures to

understand the practical applications of digital design.

SKILL DEVELOPMENT

1. Mastery of Boolean logic, K-map simplifications, and truth table realizations.

2. Practical skills in designing and simulating combinational and arithmetic circuits like adders,

multiplexers, and ALUs.

3. Proficiency in using HDL to design and test digital components.

4. Hands-on experience in building memory units and interfacing them with CPUs.

5. Understanding of basic CPU design and memory interfacing, preparing students for advanced

computer architecture.

COURSE OUTCOME
COURSE

CODE
COURSE DESCRIPTION

CO1 Implement basic digital logic functions and Boolean algebra using HDL and truth tables.

CO2 Design and realize combinational circuits such as adders, subtractors, and multiplexers.

CO3 Develop arithmetic units like 8-bit adders, multipliers, and registers using integrated circuits.

CO4 Design and implement memory units and simulate basic memory operations.

CO5 Build and interface a simple 8-bit CPU with memory, understanding the fundamental
components of a processor.

33

24MCA21: OBJECT ORIENTED PROGRAMMING WITH JAVA

Course Code: 24MCA21 Course Title Object Oriented Programming with Java

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I Basics of Java 15 HOURS
Java - What, Where and Why?, History and Features of Java, Internals of Java

Program, Difference between JDK,JRE and JVM, Internal Details of JVM,

Variable and Data Type, Unicode System, Naming Convention. OOPS

Concepts: Advantage of OOPs, Object and Class, Method Overloading,

Constructor, static variable, method and block, this keyword, Inheritance (IS-

A), Aggregation and Composition(HAS-A), Method Overriding, Covariant

Return Type, super keyword, Instance Initializer block, final keyword,

Runtime Polymorphism, static and Dynamic binding, Abstract class and

Interface, Down casting with instance of operator ,Package and Access

Modifiers, Encapsulation, Object class, Object Cloning, Java Array, Call By

Value and Call By Reference.

II CORE JAVA FEATURES 15 HOURS
Core java Features: String Handling, Exception Handling, Nested classes,

Packages and Interfaces. Multithreaded Programming – synchronization,

Input/Output – Files – Director, Utility Classes, Generics, Generic Class,

Generic methods. Serialization: Serialization & Deserialization, Serialization

with IS-A and Has-A, Transient keyword. Networking: Socket Programming,

URL class, Displaying data of a web page, Inet Address class, Datagram

Socket and Datagram Packet, Two way communication
III JDBC 14 HOURS

 JDBC: - Overview, JDBC implementation, Connection class, Statements,

Catching Database Results, handling database Queries. Error Checking and

the SQL Exception Class, The SQL Warning Class, JDBC Driver Types,

ResultSetMetaData, using a Prepared Statement, Parameterized Statements,

Stored Procedures, Transaction Management. Collection: Collection

Framework, ArrayList class, LinkedList class, ListIterator interface, HashSet

class.

IV Overview of JavaFX: 16 HOURS

Introduction to JavaFX and its architecture; Creating JavaFX Applications,

Java FX main application class; UI Controls: Working with buttons, text fields,

labels, and other UI controls Layouts: VBox, HBox, GridPane; Event

Handling: user interactions and events; CSS Styling; Introduction to FXML:

Understanding its role in simplifying JavaFX UI design. FXML Structure:

syntax and organization of FXML files. Controller Integration: Connecting

FXML with Java code.

34

REFERENCE BOOKS:

1. Herbert Schildt, "Java: The Complete Reference," 12th Edition, McGraw Hill (2021).

2. Bruce Eckel, "Thinking in Java," 4th Edition, Prentice Hall/Pearson Education (2006).

3. Ken Arnold and James Gosling, "The Java Programming Language," 4th Edition, Addison-Wesley (2005).

4. Maydene Fisher, Jon Ellis, and Jonathan Bruce, "JDBC API Tutorial and Reference," 3rd Edition,

Addison-Wesley (2001).

5. Joe Wigglesworth and Paula McMillan, "Java Programming: Advanced Topics," 5th Edition, Cengage

Learning (2011).

COURSE OBJECTIVES:

The course aims to provide students with a comprehensive understanding of Java programming,

covering the basics of the language, object-oriented programming (OOP) principles, and core Java

features. It introduces students to advanced topics such as exception handling, multithreading,

networking, and database connectivity using JDBC. Additionally, students will explore Java’s GUI

components using AWT and Swing, preparing them to design and implement interactive applications

in Java.

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
Ability to solve problems using only pure object-oriented concepts

CO2 Make decision to solve a problem using package, library and threads Handling

Errors and Exceptions

CO3 Able to develop networking applications

CO4 Ability to design and develop database applications

CO5 Ability to utilize graphical user interface (GUI) components like AWT and

Swing to design interactive applications.

35

TEACHING PEDAGOGY

Lecture-based instruction to introduce the theoretical concepts of Java programming, OOP principles, and

core Java features. Practical lab sessions and coding exercises to implement these concepts, with a focus

on real-world application development. Group discussions on advanced topics like multithreading, JDBC,

and GUI development using AWT and Swing. Case studies and hands-on projects involving database-

driven applications and network programming.

SKILL DEVELOPMENT

1. Proficiency in object-oriented programming using Java.

2. Practical skills in handling exceptions, multithreading, and file I/O operations.

3. Hands-on experience with database connectivity and query execution using JDBC.

4. Ability to design user interfaces using AWT and Swing components.

5. Mastery of Java’s collection framework and its efficient use in software development.

36

24MCA22: COMPUTER NETWORKS

Course Code: 24MCA22 Course Title Computer Networks

Course Type DSC Contact Hours 4 Hours Per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I
INTRODUCTION 15 HOURS

 Introduction: Data Communications, Computer Networks, Network Layering-

OSI reference Model, TCP-IP Protocol Suite. Physical Layer:Data and Signals,

Periodic Analog Signals, Digital Signals, Transmission Impairment, Data rate

Limits. Digital-to-Digital Conversion, Analog-to-Digital Conversion, Digital-to-

Analog Conversion, Analog-to-Digital Conversion.

II PHYSICS LAYER 14 HOURS
 Physical Layer: Transmission and Switching Transmission Modes,

Transmission media- Guided, unguided media. Multiplexing, Switching-Circuit

Switching, packet switching

III DATA LINK LAYER 16 HOURS

 Data Link Layer: Nodes and Links, Link-Layer Addressing, error Detection and

Correction- Block coding, Cyclic Codes, Checksum, Forward Error Correction,

Simple, Stop-and-wait, Go-back-N, Selective Repeat Media Access Control:

Random Access-ALOHA, CSMA, CSMA/CD, CSMA/CD, Controlled Access,

Channelization-FDMA, TDMA, CDMA

IV NETWORK LAYER 15 HOURS
Network Layer: Services, Routing Algorithms: Distance Vector, Link State, Path

Vector, and Unicast Routing Algorithms. Multicasting Basics: Addresses,

Delivery at Data Link Layer, Multicast Forwarding, Two Approaches to

Multicasting. IP Addressing, Classes, Sub netting

37

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
Understand data communication principles, network models (OSI, TCP/IP), and their

layer interactions.

CO2 Apply physical layer concepts and data link layer techniques to design and analyze

network systems.

CO3 Analyze network protocols and routing algorithms to optimize network performance.

CO4 Design network solutions using physical layer technologies, data link protocols, and

network layer routing, including IP addressing and multicasting.

CO5 Troubleshoot and secure networks using encryption, authentication, and firewall

technologies for data integrity and security.

REFERENCE BOOKS:

1. Behrouz A. Forouzan, "Data Communications and Networking," 5th Edition, McGraw Hill, 2013.

2. Andrew S. Tanenbaum, "Computer Networks," 5th Edition, Prentice-Hall.

3. William Stallings, "Data and Computer Communications," 8th Edition, Pearson.

4. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach," 6th

Edition, Pearson, 2012.

5. Larry L. Peterson and Bruce S. Davie, "Computer Networks: A Systems Approach," 5th Edition,

Morgan Kaufmann, 2011.

COURSE OBJECTIVES:

The course aims to provide students with a deep understanding of data communication principles and

computer networking. It covers network layering concepts with a focus on the OSI reference model and

the TCP/IP protocol suite. The course explores physical layer techniques for signal transmission and

conversion, as well as error detection, correction methods, and routing algorithms at the network layer.

Students will gain practical knowledge of how data is transmitted, controlled, and routed in modern

networks.

38

TEACHING PEDAGOGY

Lecture-based instruction on data communication principles, networking models, and the

functioning of each network layer. Lab sessions focused on simulating data transmission

techniques, multiplexing, and switching, using network simulation tools. Group discussions on

error correction methods, media access control, and routing algorithms. Case studies to explore

real-world scenarios of network layer functions and routing across different network

architectures.

SKILL DEVELOPMENT

2. Proficiency in understanding network models, including OSI and TCP/IP.

3. Practical skills in signal conversion, transmission media, and switching techniques.

4. Hands-on experience with data link layer error correction and media access protocols

like ALOHA, CSMA/CD.

5. Understanding and implementation of routing algorithms and IP addressing schemes.

6. Mastery of network layer services, including routing, multicast forwarding, and

subnetting.

39

24MCA23: OPERATING SYSTEMS
Course Code: 24MCA23 Course Title Operating Systems

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I INTRODUCTION TO OPERATING SYSTEM 15 HOURS
Introduction: Computer System Organization, Architecture, Structure, Operations, Process

Management, Memory Management, Storage Management, Kernel Data Structures,

Computing Environments. Operating System Structures: Services, System Calls, Types,

Operating System Structure, System Boot. Processes: Process Concept, Scheduling,

Operations, Interprocess Communication. Multithreaded Programming: Multicore

Programming, Multithreading Models.

II PROCESS SYNCHRONIZATION 14 HOURS
Process Synchronization: The Critical-Section Problem, Peterson’s Solution,
Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of

Synchronization, Monitors, Synchronization Examples. Process Scheduling: Criteria,

Scheduling Algorithms, Multi-Processor Scheduling, Real-time CPU Scheduling.

Deadlocks: System model, Characterization, Methods for handling deadlocks, Deadlock

Prevention, Avoidance, Detection and Recovery from deadlock.

III MEMORY MANAGEMENT STRATEGIES 15 HOURS

 Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure

of the Page Table. Virtual Memory Management: Demand Paging; Copy-on-Write, Page

Replacement; Allocation of Frames; Thrashing, Memory-Mapped Files, Allocating Kernel

Memory. File System: File Concept, Access Methods, Directory and Disk Structure,

Protection. File-System Implementation: Structure, File-System and Directory

Implementation, Allocation Methods, Free Space Management, Efficiency and

Performance, Recovery. Mass-Storage Structure: Overview, Disk Scheduling, Disk

Management.

IV PROTECTION 16 HOURS
Protection: Goals, Principles, Domain of Protection, Access Matrix, Implementation of the

Access Matrix, Access Control, Revocation of the Access Rights. Virtual Machines:

Building Blocks, Types of VMs and their implementations. Distributed Systems:

Advantages, Types of Network based OS, Robustness, Design Issues, Distributed File

Systems. Database Operating Systems: Requirements of Database OS – Transaction process

model – Synchronization primitives - Concurrency control algorithms. Mobile Operating

Systems: ARM and Intel architectures - Power Management - Mobile OS Architectures -

Underlying OS - Kernel structure and native level programming - Runtime issues-

Approaches to power management Case Studies: The Linux System.

40

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
 Understand the core concepts of operating systems, including architecture,

process management, memory management, and storage management, and their

role in computer system organization.

CO2

Analyze and implement synchronization mechanisms, such as semaphores,

mutex locks, and monitors, to solve the critical-section problem and classic

synchronization challenges.

CO3

Evaluate different process scheduling algorithms and apply them to manage

processes and CPU resources efficiently, while understanding techniques for

deadlock prevention and recovery.

CO4

Demonstrate knowledge of memory management strategies, including paging,

segmentation, virtual memory, and demand paging, and their impact on system

performance and efficiency.

CO5

 Explore advanced topics in operating systems, such as distributed systems,

database operating systems, virtual machines, and mobile OS architectures,

understanding their design, challenges, and applications.

REFERENCE BOOKS:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne: Operating System Concepts, 10th Edition,

Wiley, 2018.

2. William Stallings: Operating Systems: Internals and Design Principles, 9th Edition, Pearson,

2018.

3. Andrew S. Tanenbaum, Herbert Bos: Modern Operating Systems, 4th Edition, Pearson, 2015.

4. Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau: Operating Systems: Three Easy Pieces,

1st Edition, Arpaci-Dusseau Books, 2018.

5. Thomas Anderson, Michael Dahlin: Operating Systems: Principles and Practice, 2nd Edition,

Recursive Books, 2014.

COURSE OBJECTIVES:

The course aims to provide students with a comprehensive understanding of the fundamental concepts,

structures, and mechanisms of operating systems. It covers process and memory management, synchronization,

scheduling, file systems, and security, while also addressing advanced topics like virtual machines, distributed

systems, database operating systems, and mobile OS architectures. The course prepares students to design,

analyze, and optimize operating systems in various computing environments.

41

TEACHING PEDOGOGY
The teaching pedagogy for this Operating Systems syllabus combines theoretical instruction with

hands-on practical learning. Lectures will cover core concepts such as process management,

memory management, synchronization, and virtual memory, emphasizing both foundational

knowledge and advanced topics like distributed systems and mobile OS architectures.

SKILL DEVELOPMENT

• System-Level Problem-Solving: Develop the ability to design and implement solutions to process

management, synchronization, and memory management problems in operating systems.

• Advanced Resource Management: Gain expertise in handling deadlocks, process scheduling,

and virtual memory management techniques, improving system efficiency.

• OS Security and Protection: Learn to implement protection mechanisms and access control in

operating systems, ensuring secure and robust computing environments.

• Hands-on Experience with OS Case Studies: Apply theoretical knowledge through practical

case studies, especially Linux, to understand real-world operating system implementations and

optimizations.

42

24MCA24: DESIGN AND ANALYSIS OF ALGORITHMS

Course Code: 24MCA24 Course Title Design and Analysis of Algorithms

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I
INTRODUCTION 12 Hours

What is an Algorithm? Fundamentals of Algorithmic Problem Solving.

FUNDAMENTALS OF THE ALGORITHMS EFFICIENCY: Analysis Framework,

Asymptotic Notations and Standard notations and common functions, Mathematical

Analysis of Non-recursive and Recursive Algorithms.

II BRUTE FORCE 16 HOURS

Background, Selection Sort, Brute-Force String Matching. TSP DIVIDE AND

CONQUER: General method, Recurrences: The substitution method, The recursion-

tree method, The master method, Merge sort, Quick sort, Binary Search,

Multiplication of large integers, Case study: Strassen’s Matrix Multiplication.
BRUTE FORCE: Background, Selection Sort, Brute-Force String Matching. TSP

DIVIDE AND CONQUER: General method, Recurrences: The substitution method,

The recursion-tree method, The master method, Merge sort, Quick sort, Binary

Search, Multiplication of large integers, Case study: Strassen’s Matrix Multiplication
III DECREASE & CONQUER 14 HOURS

DECREASE & CONQUER: General method, Insertion Sort, Graph algorithms:

Depth First Search, Breadth First Search, Topological Sorting TRANSFORM AND

CONQUER: Case study: Heaps and Heap sort. TIME AND SPACE TRADEOFFS:

Input Enhancement in String Matching: Horspool’s algorithm, Hashing: Open and
Closed hashing.

IV GREEDY TECHNIQUE 16 HOURS

GREEDY TECHNIQUE: General method of Greedy technique, Single-Source

Shortest Paths: General method, The Bellman-Ford algorithm, Single-Source

Shortest Paths in DAGs, Dijkstra’s Algorithm. Minimum Spanning Trees: Prim’s
Algorithm, Optimal Tree problem: Huffman Trees; Case study: Kruskal’s Algorithm.
Fractional Problem. DYNAMIC PROGRAMMING: LIMITATIONS OF

ALGORITHMIC POWER P, NP and NP-complete problems, BACKTRACKING:

General method, N-Queens problem, Subset-sum problem. BRANCH AND

BOUND: General method, Travelling Salesman problem, Approximation algorithms

for TSP. Case study: Knapsack Problem.

43

REFERENCE BOOKS:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction

to Algorithms, 4th Edition, MIT Press, 2022.
2. Jon Kleinberg, Éva Tardos: Algorithm Design, 1st Edition, Pearson, 2005.
3. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani: Algorithms, 1st Edition,

McGraw-Hill, 2008.
4. Steven S. Skiena: The Algorithm Design Manual, 3rd Edition, Springer, 2020.
5. Robert Sedgewick, Kevin Wayne: Algorithms, 4th Edition, Addison-Wesley, 2011.

E-Resources:

1. https://nptel.ac.in/courses/106/101/106101060/
2. http://cse01-iiith.vlabs.ac.in/
3. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms
4. https://www.coursera.org/specializations/algorithms

COURSE OBJECTIVES:

The course objectives for the Algorithms syllabus aim to provide students with a comprehensive

understanding of fundamental algorithmic concepts and their applications in problem-solving.

Students will analyze the efficiency of algorithms using various performance metrics, including

asymptotic notations, and explore algorithmic strategies such as brute force, divide and conquer, and

dynamic programming. The course will cover advanced topics, including greedy techniques,

backtracking, and branch-and-bound methods, while investigating the limitations of algorithmic

power through discussions on NP-completeness and approximation algorithms. Additionally, students

will develop proficiency in designing and implementing algorithms to solve complex problems

effectively. Ultimately, the course seeks to equip students with the skills necessary for analyzing,

designing, and optimizing algorithms in various computational contexts.

44

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1 Analyze the non-recursive and recursive algorithms and represent the efficiency of

these algorithms in terms of the standard asymptotic notations.

CO2 Acquire the knowledge of brute force and divide and conquer techniques to design

algorithms and apply these methods in solving a given problem.

CO3 Master the decrease and conquer, transform and conquer algorithm design techniques,

and understand time versus space trade-offs.

CO4 Learn greedy method and dynamic programming methods, applying these methods to

design algorithms that solve given problems. Understand the importance of

backtracking and branch-and-bound algorithm design techniques to solve a given

problem.

CO5 Evaluate and analyze the complexity of algorithms and understand the classifications

of problems, including P, NP, and NP-complete problems.

TEACHING PEDOGOGY

The course will utilize a mix of lecture-based instruction and hands-on lab sessions to foster a

comprehensive understanding of algorithms and their applications. Lectures will cover theoretical

aspects of algorithmic problem-solving, efficiency, and different algorithmic techniques such as

brute force, divide and conquer, and dynamic programming. Lab sessions will focus on

implementing these algorithms through programming exercises, enabling students to gain practical

experience. Group discussions and case studies will enhance collaborative learning and critical

thinking about algorithmic approaches and their real-world implications.

SKILL DEVELOPMENT
1. Proficiency in analyzing the efficiency of algorithms using asymptotic notation.

2. Ability to implement and analyze various algorithmic techniques, including sorting and searching

algorithms.

3. Experience in solving complex problems using divide and conquer and dynamic programming

methods.

4. Understanding of advanced topics such as NP-completeness and approximation algorithms.

5. Development of algorithm design skills through practical coding assignments and projects.

45

24MCA25: ARTIFICIAL INTELLIGENCE

Course Code: 24MCA25 Course Title Artificial Intelligence

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 4 Domain COMPUTER SCIENCE

Syllabus

I
Introduction to Al Problem solving 15 Hours
Introduction to Al Problem solving: Problem-solving agents; Uninformed search

strategies: DFS, BFS; Informed Search: Best First Search, A* search, AO* search;

Minimax Search, Alpha-Beta pruning. Knowledge-based Agents, The Wumpus world

as an example world, Logic, Propositional logic, First-order predicate logic,

Propositional versus first-order inference, Unification and lifting, Forward chaining,

Backward chaining, Resolution, Truth maintenance systems

II Planning and Fuzzy Logic 15 HOURS

Planning – Representation of planning – Partial order planning –Planning and acting

in real world – Acting under uncertainty – Bayes’s rules – Semantics of Belief

networks – Inference in Belief networks – Making simple decisions – Making complex

decisions. Uncertainties: Non-monotonic reasoning, Probabilistic reasoning, Fuzzy

logic: Theory of Fuzzy sets, Operations on Fuzzy sets and Fuzzy logic, Reasoning with

Fuzzy logic;

III
Weak slot and Filler Structure 15 HOURS

Semantic Nets, Frames. Strong slot Filler Structures: Conceptual Dependency, scripts.

AI Programming Languages (PROLOG): Introduction, How Prolog works,

Backtracking, CUT and FAIL operators, Built –in Goals, Lists, Search in

Prolog.Connectionist Models / ANN: Foundations for Connectionist Networks,

Biological Inspiration; Different Architectures and output functions: Feed forward,

Feedback, Recurrent Networks, step, Sigmoid and different functions.

IV Language Models 15 HOURS

AI applications – Language Models – Information Retrieval- Information Extraction

–Fields of Natural Language Processing, Chatbots and its types, Artificially Intelligent

Chatbots, Introduction to Chatbot Applications (Retrieval based- Conversation based)-

Deploy a chatbot using TensorFlow in python. Machine Translation – Speech

Recognition – Robot – Hardware – Perception – Planning – Moving.

46

REFERENCE BOOKS:

1. Russell, S. and Norvig, P., <Artificial Intelligence - A Modern Approach=, 4th Edition,

Pearson, 2020.

2. Nilsson, Nils J., <The Quest for Artificial Intelligence=, 1st Edition, Cambridge University

Press, 2010, ISBN: 978-0-521-12293-1.

3. John J. Craig, <Introduction to Robotics: Mechanics and Control=, 4th Edition, Pearson,

2018.

4. Elaine Rich, Kevin Knight, Shivashankar B. Nair, <Artificial Intelligence=, 3rd Edition,

McGraw-Hill, 2008.

5. N.P. Padhy, <Artificial Intelligence and Intelligent Systems=, 1st Edition, Oxford Higher

Education, Oxford University Press, 2005.

6. George F. Luger, <Artificial Intelligence: Structures and Strategies for Complex Problem
Solving=, 6th Edition, Pearson Education, 2008.

7. Ivan Bratko, <PROLOG Programming for Artificial Intelligence=, 4th Edition, Pearson,

2011.

COURSE OBJECTIVES:

The course objectives for the Artificial Intelligence syllabus aim to provide students with a

fundamental understanding of problem-solving techniques and the development of intelligent

agents. Students will learn to analyze and implement search strategies, including uninformed and

informed search methods, as well as knowledge-based systems and their applications. The course

will explore planning techniques and the role of uncertainty in AI decision-making, alongside the

fundamentals of robotics and computer vision. Additionally, students will gain hands-on experience

in developing AI applications, such as chatbots and machine translation systems, equipping them

with the skills to apply AI technologies effectively in real-world scenarios.

47

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
Understand problem-solving techniques in AI.

CO2 Analyze and apply knowledge-based systems.

CO3 Design and implement search strategies in AI.

CO4 Apply logical systems for AI problem solving and chatbot communication.

CO5 Evaluate AI applications in various fields, including natural language processing,

Language models.

TEACHING PEDOGOGY
The course will utilize a combination of lecture-based instruction and hands-on lab sessions to

engage students in the practical applications of AI concepts. Interactive discussions will

encourage collaborative learning, while case studies will provide real-world context to theoretical

principles. Students will participate in coding exercises to develop AI applications, employing

tools like TensorFlow for chatbot deployment and machine learning tasks. Regular assessments

and group projects will reinforce learning outcomes and foster teamwork.

SKILL DEVELOPMENT

1. Proficiency in problem-solving techniques and algorithm design in AI.

2. Hands-on experience in implementing search strategies and knowledge-based systems.

3. Understanding and application of planning and decision-making under uncertainty.

4. Familiarity with robotics fundamentals and computer vision techniques.

5. Development skills in AI applications, including chatbots and natural language processing

solutions.

48

24MCA26: EMPLOYABILITY AND SKILL DEVELOPMENT

Course Code: 24MCA26 Course Title Employability and Skill Development

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus

I Soft Skills: Communication Skills 15 HOURS

Master verbal and non-verbal communication, enhance oral and written

communication, develop effective listening skills, and improve presentation

skills.Interpersonal Skills: Learn the importance of teamwork, conflict resolution

strategies, and building positive relationships with team members. Leadership
Skills: Understand the significance of leadership and develop effective leadership

qualities. Practical Exercise: As a team leader, draft an appreciation letter to team

members for successful project completion

II Quantitative Aptitude, Logical Reasoning, and Analytical Ability 15 HOURS
Quantitative Aptitude: Practice percentage calculations, profit and loss, and other

basic numerical problems. Logical Reasoning: Solve problems related to coding and

decoding, blood relations, and non-verbal reasoning. Analytical Ability: Work on

statement and assumptions, and data interpretation problems. Practical Exercise:

Conduct a mock competitive exam covering quantitative aptitude, logical reasoning,

and analytical ability

III Career Development and Workplace Etiquette 15 HOURS
Career Development: Perform a SWOC analysis for self-assessment, set career

goals, create a career plan, and develop job search strategies. Learn resume

preparation, including different types of resumes and effective writing tips.

Workplace Etiquette: Understand time management, dress code, personal

grooming, office manners, and meeting etiquette. Learn about professional ethics and

their features. Practical Exercise: Prepare a resume with at least two references and

conduct a mock interview based on the resume

IV Interview Skills and Professional Networking: 15 HOURS

Interview Skills: Explore different types of interviews, basic interview skills, stages

of an interview, and parameters for scoring. Learn how to handle rejections and

failures. Group Discussions: Understand the steps and strategies for effective group

discussions. Professional Networking: Learn the meaning, importance, and

methods of professional networking. Practical Exercise: Conduct mock group

discussions and interviews.

49

COURSE OUTCOME

CO CODE COURSE DESCRIPTION

CO1
Master both verbal and non-verbal communication, enhance writing and

presentation abilities, and improve active listening skills.

CO2 Apply quantitative aptitude, logical reasoning, and analytical skills to solve

practical problems and perform well in competitive examinations.

CO3 Create a professional resume, understand career development strategies, and

practice workplace etiquette and time management.

CO4 Develop effective interview skills, participate confidently in group discussions,

REFERENCE BOOKS:

1. Barun K Mitra, Personality Development and Soft Skills, Oxford university press, NewDelhi.

2. Gitangshu Adhikary, Communication and Corporate Etiquette, Notion Press, Mumbai.

3. Seema Gupta, Soft Skills- Interpersonal & Intrapersonal skills development, V&SPublishers,

New Delhi.

4. Dr. R S Aggarwal, Quantitative Aptitude, S.Chand Publication, New Delhi.

5. Bittu Kumar, Mastering MS Office, V&S Publisher, New Delhi

COURSE OBJECTIVES:

The course objectives for the Professional Skills Development syllabus aim to equip students with

essential soft skills required for effective communication, career development, and problem-

solving. Students will master both verbal and non-verbal communication techniques, enhance their

writing and presentation skills, and develop active listening abilities. The course will also cover

quantitative aptitude, logical reasoning, and analytical skills to prepare students for competitive

examinations and real-world problem-solving. Additionally, students will learn the nuances of

career development, including resume writing, time management, and workplace etiquette. The

course further aims to develop effective interview skills, group discussion strategies, and the

importance of professional networking.

50

and understand the importance of professional networking.

CO5 Build leadership qualities and interpersonal skills for teamwork, conflict

resolution, and positive relationship-building within a professional environment.

TEACHING PEDOGOGY

The teaching pedagogy for this course will involve a mix of lectures, interactive sessions, and

practical exercises. Emphasis will be placed on active participation through role-playing, group

activities, and mock interviews. Case studies and real-life scenarios will be discussed to provide

context to soft skills like leadership, communication, and workplace etiquette.

SKILL DEVELOPMENT

1. Students will enhance verbal, non-verbal, and written communication skills, critical

for workplace success.

2. Proficiency in solving numerical problems, logical puzzles, and data interpretation,

sharpening analytical thinking.

3. Expertise in creating professional resumes, developing career plans, and practicing

essential workplace etiquette.

4. Students will gain confidence in interviews, group discussions, and building

professional networks.

5. Building leadership qualities and teamwork skills through real-life simulations,

fostering effective collaboration and conflict resolution.

51

24MCA27: JAVA PROGRAMMING LAB

Course Code: 24MCA27P Course Title Java Programming Lab

Course Type DSC Contact Hours 4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus
LIST OF JAVA PROGRAMMING LAB PROGRAMS

1. Program to illustrate class, objects and constructors

2. Program to implement overloading, overriding, polymorphism etc.

3. Program to implement the usage of packages

4. Program to create user defined and predefined exception

5. Program for handling file operation

6. Directory manipulation in java

7. Implement the concept of multithreading and synchronization

8. Program to implement Generic class and generic methods

9. Socket programming to implement communications

10. Broadcasting program using UDP protocol

11. Program for downloading web pages from the internet using URL

12. Program to implement JDBC in GUI and Console Application

13. Applet program for passing parameters

14. Applet program for loading an image and running an audio file

15. Program for event-driven paradigm in Java

16. Event driven program for Graphical Drawing Application

17. Program that uses Menu driven Application

COURSE OBJECTIVES:

The course objectives for the Java Programming Lab aim to provide students with a

practical understanding of object-oriented programming principles, focusing on classes,

objects, and constructors. Students will learn to implement various programming concepts

such as method overloading, overriding, and polymorphism. The course will cover

exception handling, file operations, and multithreading to equip students with skills to

manage errors and perform concurrent programming. Additionally, students will gain

experience in socket programming and JDBC for database interactions, along with

developing GUI applications using applets and event-driven programming.

52

COURSE OUTCOME
CO CODE COURSE DESCRIPTION

CO1 Understand the principles of object-oriented programming by illustrating

classes, objects, and constructors.

CO2 Demonstrate the ability to implement method overloading, overriding, and

polymorphism in Java applications.

CO3 Acquire skills in exception handling and file operations, including directory

manipulation.

CO4 Implement multithreading and synchronization in Java programs to handle

concurrent tasks effectively.

CO5 Develop applications using socket programming and JDBC, and create

graphical user interfaces using applets and event-driven programming

techniques.

TEACHING PEDOGOGY
The teaching pedagogy for the Java Programming Lab will include a combination of lectures and

hands-on programming sessions. Students will be introduced to fundamental Java concepts through

theoretical explanations followed by practical demonstrations. Lab sessions will involve guided

exercises where students will write and debug code, fostering an interactive learning environment.

Group projects and pair programming activities will encourage collaboration and peer learning.

Additionally, case studies of real-world applications will be used to illustrate the practical

applications of Java programming concepts

SKILL DEVELOPMENT

● Students will master key concepts such as classes, objects, inheritance, and polymorphism.

● Skills in creating and managing user-defined and predefined exceptions will be developed.

● Understanding of concurrency in Java applications through the implementation of

multithreading techniques.

● Ability to design and implement socket-based communication and UDP broadcasting in

Java.

● Practical experience in using JDBC to connect Java applications with databases and

executing SQL queries.

53

24MCA28: ARTIFICIAL INTELLIGENCE LAB USING PYTHON

Course Code: 24MCA28P Course Title Artificial Intelligence Lab Using Python

Course Type DSC Contact
Hours

4 Hours per Week Total:60 Hours

Credit 2 Domain COMPUTER SCIENCE

Syllabus
LIST OF PROGRAMS OF ARTIFICIAL INTELLIGENCE LAB USING PYTHON

1. Implementation of Depth First Search (DFS) Algorithm.

2. Implementation of Breadth First Search (BFS) Algorithm.

3. Best First Search Algorithm Implementation.

4. A Search Algorithm for Pathfinding.*

5. AO Search Algorithm for Problem Solving.*

6. Minimax Algorithm for Game Playing.

7. Alpha-Beta Pruning to Optimize Minimax Algorithm.

8. Knowledge Representation using Propositional Logic in Prolog.

9. First-Order Predicate Logic (FOPL) in Prolog for Reasoning.

10. Resolution Algorithm in Propositional Logic.

11. Implementation of Forward Chaining in Prolog.

12. Implementation of Backward Chaining in Prolog.

13. Simple Bayesian Network Representation for Inference.

14. Fuzzy Logic: Implementation of Fuzzy Set Operations.

15. Partial Order Planning Algorithm for Task Scheduling.

16. Prolog Programming with Backtracking, CUT, and FAIL.

17. ANN Model: Simple Feedforward Neural Network using Python.

18. Chatbot Development using TensorFlow in Python.

19. Speech Recognition System using Python and Libraries (e.g., Speech Recognition).

20. Simple Machine Translation System using Python.

54

COURSE OBJECTIVES:

The course objectives for the AI Lab using pythonto provide students with hands-on experience in

implementing various algorithms for problem-solving in artificial intelligence. Students will learn to

apply search techniques such as Breadth-First Search and A* search for optimal pathfinding. The lab

will also cover game theory concepts through the implementation of Minimax search for two-player

games and the solution of constraint satisfaction problems like the 4-Queens problem. Additionally,

students will gain practical skills in image processing using the OpenCV library, machine learning tasks

such as classification and clustering, and natural language processing (NLP) techniques using Python.

The course ultimately seeks to enhance students’ abilities to develop AI applications and perform data

analysis.

COURSE OUTCOME
COURSE

CODE
COURSE DESCRIPTION

CO1 Implement search algorithms, including Breadth-First Search and A*, to solve complex

problems like Tic-Tac-Toe and optimal pathfinding.

CO2 Develop solutions for constraint satisfaction problems, such as the 4-Queens problem,

and apply Minimax search for two-player games.

CO3 Utilize the OpenCV library for image processing tasks, including resizing, blurring,

edge detection, and segmentation.

CO4 Apply machine learning algorithms such as Decision Trees, Naïve Bayes, and K-Means

clustering to classify and analyze datasets.

CO5 Implement natural language processing tasks using Python NLTK, and create a chatbot

using Python, showcasing a range of AI applications.

55

TEACHING PEDOGOGY

The teaching pedagogy for the AI and Python Lab will combine theoretical lectures with practical

programming sessions. Students will be introduced to various algorithms through conceptual explanations,

followed by guided coding exercises in a lab environment. Hands-on projects will allow students to

implement algorithms for search, image processing, and machine learning. Collaborative group work will

be encouraged to foster peer learning and enhance problem-solving skills. Additionally, real-world case

studies will be presented to demonstrate the applications of AI and machine learning techniques

SKILL DEVELOPMENT

1. Students will develop skills in coding search algorithms and problem-solving

techniques relevant to AI.

2. Proficiency in using OpenCV for various image manipulation and analysis tasks will

be cultivated.

3. Understanding of different classification and clustering algorithms, along with practical

experience in data analysis.

4. Capability to perform key NLP tasks such as tokenization, stemming, and named entity

recognition using Python.

5. Hands-on experience in developing AI-based conversational agents will enhance

programming and application design skills.

