

VI Semester B.C.A. Examination, May/June 2018 (CBCS) (F +R) (2016 – 17 & Onwards) COMPUTER SCIENCE BCA 601 : Theory of Computation

Time: 3 Hours Max. Marks: 100

Instruction: Answer all Sections.

SECTION - A

Answer any ten questions. Each question carries two marks.

 $(10 \times 2 = 20)$

- 1. What is finite automata? Explain with block diagram.
- 2. What is trap state? Explain with a simple example.
- What are the moves made by the following DFA while processing the string abaab? Find if the string is accepted or rejected by DFA.

- Design a regular expression over Σ ={a, b} for the language accepting string of exactly length 2.
- 5. State pumping Lemma for regular languages.
- 6. State Arden's theorem.
- 7. Define grammar. Give one example.

- 8. Mention any two applications of context free grammar.
- 9. Define Nullable variable.
- 10. Define GNF.
- 11. Define turing machine.
- 12. Define recursively enumerable language.

SECTION - B

Answer any five questions. Each question carries five marks.

 $(5 \times 5 = 25)$

- Construct a DFA to accept string of 0's and 1's representing zero modulo five.
- 14. Define NFA. Obtain a NFA to accept the language L = {w/w ∈ ababⁿ or abaⁿ where n ≥ 0}.
- 15. Using pumping Lemma prove the language $L = \{yy/y \in (0.1)^*\}$ is not regular.
- 16. Convert the DFA to Regular Expression.

17. Define context free grammar.

Consider a grammar G = (V, T, P, S) where $V = \{S\} T = \{a, b\} S = S P = \{S \rightarrow aS | b\}$. Find the language accepted by G.

18. Explain Chomsky hierarchy of grammar.

1.

19. Eliminate useless symbols from the following grammar

 $S \rightarrow aAa$

 $A \rightarrow Sb$

 $A \rightarrow bcc$

 $A \rightarrow DaA$

 $C \rightarrow abb$

 $C \rightarrow DD$

 $E \rightarrow ac$

 $D \rightarrow aDa$

20. What are the different types of turing machine?

SECTION - C

Answer any three questions. Each question carries fifteen marks.

(15×3=45)

21. Convert the following NFA to DFA using lazy evaluation method.

start
$$\rightarrow Q_0$$
 $\downarrow 0$ $\downarrow 0$ $\downarrow 0$ $\downarrow 0$ accept $\downarrow 0$ \downarrow

22. Minimize the following DFA using table filling algorithm.

	δ	a	b
>	A	В	C
	В	G	С
*	С	Α	C
	D	G-	G
	E	Н	F
	F	С	G
	G	G	E
	Н	G	С

- 23. Define pushdown automata. Obtain a PDA to accept the language $L = \{a^nb^n|n\geq 1\}$.
- 24. a) Obtain a grammar to generate string consisting of any number of a's and b's with atleast one a or atleast one b. (5+5+5)
 - b) For the following production

 $S \rightarrow AB$

 $A \rightarrow aaA \in$

B → Bb|∈

Write the left most and right most derivation for the string aab.

c) For the grammar G with production rules

 $E \rightarrow E + E$

E → E * E

 $E \rightarrow id$

Where $V = \{E\} T = \{id\} S = \{E\}$, obtain the right most derivation and the parse tree for the string W = id + id * id.

25. Obtain a turing machine to accept the language $L = \{a^nb^n|n \ge 1\}$.

SECTION - D

Answer any one question.

(10×1=10)

- 26. Convert the RE (a + b)* abb to DFA.
- Write short notes on halting problem of turing machine and post correspondence problem.